IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v15y2021i3p623-644_9.html
   My bibliography  Save this article

A review on Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes

Author

Listed:
  • Jang, Jiwook
  • Oh, Rosy

Abstract

The Poisson process is an essential building block to move up to complicated counting processes, such as the Cox (“doubly stochastic Poisson”) process, the Hawkes (“self-exciting”) process, exponentially decaying shot-noise Poisson (simply “shot-noise Poisson”) process and the dynamic contagion process. The Cox process provides flexibility by letting the intensity not only depending on time but also allowing it to be a stochastic process. The Hawkes process has self-exciting property and clustering effects. Shot-noise Poisson process is an extension of the Poisson process, where it is capable of displaying the frequency, magnitude and time period needed to determine the effect of points. The dynamic contagion process is a point process, where its intensity generalises the Hawkes process and Cox process with exponentially decaying shot-noise intensity. To facilitate the usage of these processes in practice, we revisit the distributional properties of the Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes. We provide simulation algorithms for these processes, which would be useful to statistical analysis, further business applications and research. As an application of the compound processes, numerical comparisons of value-at-risk and tail conditional expectation are made.

Suggested Citation

  • Jang, Jiwook & Oh, Rosy, 2021. "A review on Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes," Annals of Actuarial Science, Cambridge University Press, vol. 15(3), pages 623-644, November.
  • Handle: RePEc:cup:anacsi:v:15:y:2021:i:3:p:623-644_9
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499520000287/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
    2. Habyarimana, Cassien & Aduda, Jane A. & Scalas, Enrico & Chen, Jing & Hawkes, Alan G. & Polito, Federico, 2023. "A fractional Hawkes process II: Further characterization of the process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2023. "Optimal dividend strategies for a catastrophe insurer," Papers 2311.05781, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:15:y:2021:i:3:p:623-644_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.