IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v3y2021i1d10.1007_s42521-021-00027-5.html
   My bibliography  Save this article

On cointegration and cryptocurrency dynamics

Author

Listed:
  • Georg Keilbar

    (Humboldt-University of Berlin)

  • Yanfen Zhang

    (Humboldt-University of Berlin
    Xiamen University)

Abstract

This paper aims to model the joint dynamics of cryptocurrencies in a nonstationary setting. In particular, we analyze the role of cointegration relationships within a large system of cryptocurrencies in a vector error correction model (VECM) framework. To enable analysis in a dynamic setting, we propose the COINtensity VECM, a nonlinear VECM specification accounting for a varying systemwide cointegration exposure. Our results show that cryptocurrencies are indeed cointegrated with a cointegration rank of four. We also find that all currencies are affected by these long term equilibrium relations. The nonlinearity in the error adjustment turned out to be stronger during the height of the cryptocurrency bubble. A simple statistical arbitrage trading strategy is proposed showing a great in-sample performance, whereas an out-of-sample analysis gives reason to treat the strategy with caution.

Suggested Citation

  • Georg Keilbar & Yanfen Zhang, 2021. "On cointegration and cryptocurrency dynamics," Digital Finance, Springer, vol. 3(1), pages 1-23, March.
  • Handle: RePEc:spr:digfin:v:3:y:2021:i:1:d:10.1007_s42521-021-00027-5
    DOI: 10.1007/s42521-021-00027-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-021-00027-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-021-00027-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    2. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
    5. Tim Leung & Hung Nguyen, 2019. "Constructing cointegrated cryptocurrency portfolios for statistical arbitrage," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 36(4), pages 581-599, September.
    6. Yhlas Sovbetov, 2018. "Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 2(2), pages 1-27.
    7. Alexei Onatski & Chen Wang, 2018. "Alternative Asymptotics for Cointegration Tests in Large VARs," Econometrica, Econometric Society, vol. 86(4), pages 1465-1478, July.
    8. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    9. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    10. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    11. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    12. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    13. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Kristensen, Dennis & Rahbek, Anders, 2013. "Testing And Inference In Nonlinear Cointegrating Vector Error Correction Models," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1238-1288, December.
    16. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    17. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    18. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    19. Soren Johansen, 2002. "A Small Sample Correction for the Test of Cointegrating Rank in the Vector Autoregressive Model," Econometrica, Econometric Society, vol. 70(5), pages 1929-1961, September.
    20. Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
    21. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    22. Shahzad, Syed Jawad Hussain & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav & Lucey, Brian, 2019. "Is Bitcoin a better safe-haven investment than gold and commodities?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 322-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weining & Wooldridge, Jeffrey M. & Xu, Mengshan, 2020. "Improved Estimation of Dynamic Models of Conditional Means and Variances," IRTG 1792 Discussion Papers 2020-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Zinovyev, Elizaveta & Reule, Raphael C. G. & Härdle, Wolfgang, 2021. "Understanding Smart Contracts: Hype or hope?," IRTG 1792 Discussion Papers 2021-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Wang, Weining & Yu, Lining & Wang, Bingling, 2020. "Tail Event Driven Factor Augmented Dynamic Model," IRTG 1792 Discussion Papers 2020-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Jong-Min Kim & Chanho Cho & Chulhee Jun, 2022. "Forecasting the Price of the Cryptocurrency Using Linear and Nonlinear Error Correction Model," JRFM, MDPI, vol. 15(2), pages 1-10, February.
    5. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.
    6. Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018. "Using generalized estimating equations to estimate nonlinear models with spatial data," Papers 1810.05855, arXiv.org.
    7. Konstantin Hausler, 2022. "ETF construction on CRIX," Papers 2211.15260, arXiv.org, revised Mar 2023.
    8. Karsten Reichold, 2022. "A Residuals-Based Nonparametric Variance Ratio Test for Cointegration," Papers 2211.06288, arXiv.org, revised Dec 2022.
    9. Konstantin Hausler & Wolfgang Karl Hardle, 2021. "Cryptocurrency Dynamics: Rodeo or Ascot?," Papers 2103.12461, arXiv.org, revised Jan 2022.
    10. Häusler, Konstantin & Härdle, Wolfgang, 2021. "Rodeo or ascot: Which hat to wear at the crypto race?," IRTG 1792 Discussion Papers 2021-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    2. Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Paolo Giudici & Paolo Pagnottoni, 2019. "High Frequency Price Change Spillovers in Bitcoin Markets," Risks, MDPI, vol. 7(4), pages 1-18, November.
    4. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    5. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    6. Pär Österholm, 2005. "The Taylor Rule: A Spurious Regression?," Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 217-247, July.
    7. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
    8. Şoiman, Florentina & Dumas, Jean-Guillaume & Jimenez-Garces, Sonia, 2023. "What drives DeFi market returns?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    9. Onatski, Alexei & Wang, Chen, 2019. "Extreme canonical correlations and high-dimensional cointegration analysis," Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.
    10. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Wanas Al-Jarrah, Idries Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 96-113.
    11. Guillén, Osmani Teixeira & Hecq, Alain & Issler, João Victor & Saraiva, Diogo, 2015. "Forecasting multivariate time series under present-value model short- and long-run co-movement restrictions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 862-875.
    12. Ladislav Kristoufek, 2022. "On the role of stablecoins in cryptoasset pricing dynamics," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-26, December.
    13. Christian M. Hafner & Sabrine Majeri, 2022. "Analysis of cryptocurrency connectedness based on network to transaction volume ratios," Digital Finance, Springer, vol. 4(2), pages 187-216, September.
    14. Hina, Hafsa & Qayyum, Abdul, 2015. "Exchange Rate Determination and Out of Sample Forecasting: Cointegration Analysis," MPRA Paper 61997, University Library of Munich, Germany.
    15. Abakah, Emmanuel Joel Aikins & Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko, 2021. "Economic policy uncertainty: Persistence and cross-country linkages," Research in International Business and Finance, Elsevier, vol. 58(C).
    16. Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
    17. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    18. Syed Jawad Hussain Shahzad & Elie Bouri & Sang Hoon Kang & Tareq Saeed, 2021. "Regime specific spillover across cryptocurrencies and the role of COVID-19," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    19. Pattnaik, Debidutta & Hassan, M. Kabir & Dsouza, Arun & Tiwari, Aviral & Devji, Shridev, 2023. "Ex-post facto analysis of cryptocurrency literature over a decade using bibliometric technique," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    20. Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.

    More about this item

    Keywords

    Cointegration; VECM; Nonstationarity; Cryptocurrencies;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:3:y:2021:i:1:d:10.1007_s42521-021-00027-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.