IDEAS home Printed from https://ideas.repec.org/a/eee/beexfi/v30y2021ics2214635021000071.html
   My bibliography  Save this article

Volatility connectedness of major cryptocurrencies: The role of investor happiness

Author

Listed:
  • Bouri, Elie
  • Gabauer, David
  • Gupta, Rangan
  • Tiwari, Aviral Kumar

Abstract

In this paper, we first obtain a time-varying measure of volatility connectedness involving fifteen major cryptocurrencies based on a dynamic conditional correlation-generalized autoregressive conditional heteroscedasticity (DCC-GARCH) model, and then analyze the role of investor sentiment in explaining the movement of the connectedness metric within a quantile-on-quantile framework. Our findings show that lower quantiles of investor happiness, built on Twitter feed data as a proxy for investor sentiment, is positively associated with the entire conditional distribution of connectedness, but the opposite is observed at higher values of investor happiness. In addition, when we look at the effect of sentiment on the common market volatility, we are able to deduce that as investors become exceedingly unhappy, overall market volatility increases and this is associated with high market connectedness. The heightened volatility possibly due to higher trading, seems to suggest that cryptocurrencies are used for hedging when investor sentiment is weak, with evidence in favor of this behavior being relatively stronger than the possible speculative motive associated with happy investors, as low total connectedness is coupled with high common volatility. Our results tend to suggest that, relatively more diversification opportunities are available when investors are happy rather than when sentiment is weak.

Suggested Citation

  • Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
  • Handle: RePEc:eee:beexfi:v:30:y:2021:i:c:s2214635021000071
    DOI: 10.1016/j.jbef.2021.100463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214635021000071
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jbef.2021.100463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    3. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    4. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    5. Deven Bathia & Don Bredin & Dirk Nitzsche, 2016. "International Sentiment Spillovers in Equity Returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(4), pages 332-359, October.
    6. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    7. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    8. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    11. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    12. John Beirne & Guglielmo Maria Caporale & Marianne Schulze-Ghattas & Nicola Spagnolo, 2013. "Volatility Spillovers and Contagion from Mature to Emerging Stock Markets," Review of International Economics, Wiley Blackwell, vol. 21(5), pages 1060-1075, November.
    13. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    14. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    15. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    16. Tiwari, Aviral Kumar & Cunado, Juncal & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility spillovers across global asset classes: Evidence from time and frequency domains," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 194-202.
    17. Antonakakis, Nikolaos, 2012. "Exchange return co-movements and volatility spillovers before and after the introduction of euro," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1091-1109.
    18. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    19. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    20. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
    21. Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis," Finance Research Letters, Elsevier, vol. 29(C), pages 68-74.
    22. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    23. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    24. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    25. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    26. Shahzad, Syed Jawad Hussain & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav & Lucey, Brian, 2019. "Is Bitcoin a better safe-haven investment than gold and commodities?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 322-330.
    27. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    28. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    29. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    30. Deven Bathia & Don Bredin, 2013. "An examination of investor sentiment effect on G7 stock market returns," The European Journal of Finance, Taylor & Francis Journals, vol. 19(9), pages 909-937, October.
    31. Thomas J. Fisher & Colin M. Gallagher, 2012. "New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 777-787, June.
    32. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    33. repec:wsr:wpaper:y:2012:i:080 is not listed on IDEAS
    34. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    35. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng‐Fei Dai & John W. Goodell & Luu Duc Toan Huynh & Zhifeng Liu & Shaen Corbet, 2023. "Understanding the transmission of crash risk between cryptocurrency and equity markets," The Financial Review, Eastern Finance Association, vol. 58(3), pages 539-573, August.
    2. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    3. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    4. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    5. Li, Xingyi & Gan, Kai & Zhou, Qi, 2023. "Dynamic volatility connectedness among cryptocurrencies and China's financial assets in standard times and during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 51(C).
    6. Andrada-Félix, Julián & Fernandez-Perez, Adrian & Sosvilla-Rivero, Simón, 2020. "Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    7. Muneer Shaik & Mohd Ziaur Rehman, 2023. "The Dynamic Volatility Connectedness of Major Environmental, Social, and Governance (ESG) Stock Indices: Evidence Based on DCC-GARCH Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(1), pages 231-246, March.
    8. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    9. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    10. Zhang, Wenting & He, Xie & Hamori, Shigeyuki, 2022. "Volatility spillover and investment strategies among sustainability-related financial indexes: Evidence from the DCC-GARCH-based dynamic connectedness and DCC-GARCH t-copula approach," International Review of Financial Analysis, Elsevier, vol. 83(C).
    11. Kumar, Ashish & Iqbal, Najaf & Mitra, Subrata Kumar & Kristoufek, Ladislav & Bouri, Elie, 2022. "Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    12. Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).
    13. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    14. Toan Luu Duc Huynh, 2023. "When Elon Musk Changes his Tone, Does Bitcoin Adjust Its Tune?," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 639-661, August.
    15. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    16. Dang, Tam Hoang Nhat & Balli, Faruk & Balli, Hatice Ozer & Gabauer, David & Nguyen, Thi Thu Ha, 2024. "Sectoral uncertainty spillovers in emerging markets: A quantile time–frequency connectedness approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 121-139.
    17. Ha, Le Thanh & Nham, Nguyen Thi Hong, 2022. "An application of a TVP-VAR extended joint connected approach to explore connectedness between WTI crude oil, gold, stock and cryptocurrencies during the COVID-19 health crisis," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    18. BRIK, Hatem & El OUAKDI, Jihene & FTITI, Zied, 2022. "Roles of stable versus nonstable cryptocurrencies in Bitcoin market dynamics," Research in International Business and Finance, Elsevier, vol. 62(C).
    19. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2023. "Does economic policy uncertainty drive the dynamic spillover among traditional currencies and cryptocurrencies? The role of the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 64(C).
    20. Urom, Christian & Ndubuisi, Gideon & Del Lo, Gaye & Yuni, Denis, 2023. "Global commodity and equity markets spillovers to Africa during the COVID-19 pandemic," Emerging Markets Review, Elsevier, vol. 55(C).

    More about this item

    Keywords

    Cryptocurrency market; DCC-GARCH; Volatility connectedness; Investor happiness; Quantile-on-quantile regression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:beexfi:v:30:y:2021:i:c:s2214635021000071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-behavioral-and-experimental-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.