IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.19572.html
   My bibliography  Save this paper

Canonical correlation analysis of stochastic trends via functional approximation

Author

Listed:
  • Massimo Franchi
  • Iliyan Georgiev
  • Paolo Paruolo

Abstract

This paper proposes a novel canonical correlation analysis for semiparametric inference in $I(1)/I(0)$ systems via functional approximation. The approach can be applied coherently to panels of $p$ variables with a generic number $s$ of stochastic trends, as well as to subsets or aggregations of variables. This study discusses inferential tools on $s$ and on the loading matrix $\psi$ of the stochastic trends (and on their duals $r$ and $\beta$, the cointegration rank and the cointegrating matrix): asymptotically pivotal test sequences and consistent estimators of $s$ and $r$, $T$-consistent, mixed Gaussian and efficient estimators of $\psi$ and $\beta$, Wald tests thereof, and misspecification tests for checking model assumptions. Monte Carlo simulations show that these tools have reliable performance uniformly in $s$ for small, medium and large-dimensional systems, with $p$ ranging from 10 to 300. An empirical analysis of 20 exchange rates illustrates the methods.

Suggested Citation

  • Massimo Franchi & Iliyan Georgiev & Paolo Paruolo, 2024. "Canonical correlation analysis of stochastic trends via functional approximation," Papers 2411.19572, arXiv.org.
  • Handle: RePEc:arx:papers:2411.19572
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.19572
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.19572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.