IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.19572.html
   My bibliography  Save this paper

Canonical correlation analysis of stochastic trends via functional approximation

Author

Listed:
  • Massimo Franchi
  • Iliyan Georgiev
  • Paolo Paruolo

Abstract

This paper proposes a novel canonical correlation analysis for semiparametric inference in $I(1)/I(0)$ systems via functional approximation. The approach can be applied coherently to panels of $p$ variables with a generic number $s$ of stochastic trends, as well as to subsets or aggregations of variables. This study discusses inferential tools on $s$ and on the loading matrix $\psi$ of the stochastic trends (and on their duals $r$ and $\beta$, the cointegration rank and the cointegrating matrix): asymptotically pivotal test sequences and consistent estimators of $s$ and $r$, $T$-consistent, mixed Gaussian and efficient estimators of $\psi$ and $\beta$, Wald tests thereof, and misspecification tests for checking model assumptions. Monte Carlo simulations show that these tools have reliable performance uniformly in $s$ for small, medium and large-dimensional systems, with $p$ ranging from 10 to 300. An empirical analysis of 20 exchange rates illustrates the methods.

Suggested Citation

  • Massimo Franchi & Iliyan Georgiev & Paolo Paruolo, 2024. "Canonical correlation analysis of stochastic trends via functional approximation," Papers 2411.19572, arXiv.org.
  • Handle: RePEc:arx:papers:2411.19572
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.19572
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(1), pages 116-142, February.
    2. Matteo Barigozzi & Giuseppe Cavaliere & Lorenzo Trapani, 2024. "Inference in Heavy-Tailed Nonstationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 565-581, January.
    3. Alexei Onatski & Chen Wang, 2018. "Alternative Asymptotics for Cointegration Tests in Large VARs," Econometrica, Econometric Society, vol. 86(4), pages 1465-1478, July.
    4. Anders Rygh Swensen, 2006. "Bootstrap Algorithms for Testing and Determining the Cointegration Rank in VAR Models -super-1," Econometrica, Econometric Society, vol. 74(6), pages 1699-1714, November.
    5. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    6. Franchi, Massimo & Paruolo, Paolo, 2020. "Cointegration In Functional Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 803-839, October.
    7. Onatski, Alexei & Wang, Chen, 2019. "Extreme canonical correlations and high-dimensional cointegration analysis," Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.
    8. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    9. Nielsen, Morten Ørregaard & Seo, Won-Ki & Seong, Dakyung, 2023. "Inference On The Dimension Of The Nonstationary Subspace In Functional Time Series," Econometric Theory, Cambridge University Press, vol. 39(3), pages 443-480, June.
    10. Johansen, Soren, 2002. "A small sample correction for tests of hypotheses on the cointegrating vectors," Journal of Econometrics, Elsevier, vol. 111(2), pages 195-221, December.
    11. Ulrich K. Müller & Mark W. Watson, 2008. "Testing Models of Low-Frequency Variability," Econometrica, Econometric Society, vol. 76(5), pages 979-1016, September.
    12. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    13. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
    14. Shi Chen & Melanie Schienle, 2024. "Large Spillover Networks of Nonstationary Systems," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 422-436, April.
    15. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2015. "Bootstrap Testing of Hypotheses on Co‐Integration Relations in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 83, pages 813-831, March.
    16. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    17. Soren Johansen, 2002. "A Small Sample Correction for the Test of Cointegrating Rank in the Vector Autoregressive Model," Econometrica, Econometric Society, vol. 70(5), pages 1929-1961, September.
    18. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    19. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    20. Johansen, Søren, 2000. "A Bartlett Correction Factor For Tests On The Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 16(5), pages 740-778, October.
    21. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    22. Matteo Barigozzi & Lorenzo Trapani, 2022. "Testing for Common Trends in Nonstationary Large Datasets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1107-1122, June.
    23. Johansen, Søren & Juselius, Katarina, 2014. "An asymptotic invariance property of the common trends under linear transformations of the data," Journal of Econometrics, Elsevier, vol. 178(P2), pages 310-315.
    24. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    25. Bierens, Herman J., 1997. "Nonparametric cointegration analysis," Journal of Econometrics, Elsevier, vol. 77(2), pages 379-404, April.
    26. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    27. Johansen, Soren, 1995. "Identifying restrictions of linear equations with applications to simultaneous equations and cointegration," Journal of Econometrics, Elsevier, vol. 69(1), pages 111-132, September.
    28. Rongmao Zhang & Peter Robinson & Qiwei Yao, 2019. "Identifying Cointegration by Eigenanalysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 916-927, April.
    29. Chang, Yoosoon & Kim, Chang Sik & Park, Joon Y., 2016. "Nonstationarity in time series of state densities," Journal of Econometrics, Elsevier, vol. 192(1), pages 152-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morten {O}rregaard Nielsen & Won-Ki Seo & Dakyung Seong, 2023. "Inference on common trends in functional time series," Papers 2312.00590, arXiv.org, revised May 2024.
    2. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    3. Anna Bykhovskaya & Vadim Gorin, 2020. "Cointegration in large VARs," Papers 2006.14179, arXiv.org, revised Dec 2021.
    4. John L. Glascock & Wikrom Prombutr & Ying Zhang & Tingyu Zhou, 2018. "Can Investors Hold More Real Estate? Evidence from Statistical Properties of Listed REIT versus Non-REIT Property Companies in the U.S," The Journal of Real Estate Finance and Economics, Springer, vol. 56(2), pages 274-302, February.
    5. Georg Keilbar & Yanfen Zhang, 2021. "On cointegration and cryptocurrency dynamics," Digital Finance, Springer, vol. 3(1), pages 1-23, March.
    6. Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
    7. Chiara Casoli & Riccardo (Jack) Lucchetti, 2022. "Permanent-Transitory decomposition of cointegrated time series via dynamic factor models, with an application to commodity prices [Commodity-price comovement and global economic activity]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 494-514.
    8. Eleni Constantinou & Avo Kazandjian & Georgios P. Kouretas & Vera Tahmazian, 2008. "Common Stochastic Trends Among The Cyprus Stock Exchange And The Ase, Lse And Nyse," Bulletin of Economic Research, Wiley Blackwell, vol. 60(4), pages 327-349, October.
    9. Charles Yuji Horioka & Akiko Terada-Hagiwara, 2016. "The Impact of Pre-marital Sex Ratios on Household Saving in Two Asian Countries: The Competitive Saving Motive Revisited," ISER Discussion Paper 0975, Institute of Social and Economic Research, Osaka University.
    10. Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
    11. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    12. Singh, Tarlok, 2010. "Does domestic saving cause economic growth? A time-series evidence from India," Journal of Policy Modeling, Elsevier, vol. 32(2), pages 231-253, March.
    13. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
    14. Guillaume Chevillon, 2017. "Robust cointegration testing in the presence of weak trends, with an application to the human origin of global warming," Econometric Reviews, Taylor & Francis Journals, vol. 36(5), pages 514-545, May.
    15. Onatski, Alexei & Wang, Chen, 2019. "Extreme canonical correlations and high-dimensional cointegration analysis," Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.
    16. Hwang, Jungbin & Sun, Yixiao, 2018. "SIMPLE, ROBUST, AND ACCURATE F AND t TESTS IN COINTEGRATED SYSTEMS," Econometric Theory, Cambridge University Press, vol. 34(5), pages 949-984, October.
    17. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
    18. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    19. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    20. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.19572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.