IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.12461.html
   My bibliography  Save this paper

Cryptocurrency Dynamics: Rodeo or Ascot?

Author

Listed:
  • Konstantin Hausler
  • Wolfgang Karl Hardle

Abstract

We model the dynamics of the cryptocurrency (CC) asset class via a stochastic volatility with correlated jumps (SVCJ) model with rolling-window parameter estimates. By analyzing the time-series of parameters, stylized patterns are observable which are robust to changes of the window size and supported by cluster analysis. During bullish periods, volatility stabilizes at low levels and the size and volatility of jumps in mean decreases. In bearish periods though, volatility increases and takes longer to return to its long-run trend. Furthermore, jumps in mean and jumps in volatility are independent. With the rise of the CC market in 2017, a level shift of the volatility of volatility occurred. All codes are available on Quantlet.com.

Suggested Citation

  • Konstantin Hausler & Wolfgang Karl Hardle, 2021. "Cryptocurrency Dynamics: Rodeo or Ascot?," Papers 2103.12461, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2103.12461
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.12461
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    2. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    3. Ai Jun Hou & Weining Wang & Cathy Y H Chen & Wolfgang Karl Härdle, 2020. "Pricing Cryptocurrency Options," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 250-279.
    4. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Georg Keilbar & Yanfen Zhang, 2021. "On cointegration and cryptocurrency dynamics," Digital Finance, Springer, vol. 3(1), pages 1-23, March.
    7. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    8. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    11. Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
    12. Chen, Shi & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Lee, TM & Ong, Bobby, 2016. "A first econometric analysis of the CRIX family," SFB 649 Discussion Papers 2016-031, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
    14. G. Caginalp & M. Desantis, 2011. "Stock price dynamics: nonlinear trend, volume, volatility, resistance and money supply," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 849-861.
    15. Igor Rivin & Carlo Scevola, 2018. "The CCI30 Index," Papers 1804.06711, arXiv.org.
    16. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Häusler, Konstantin & Härdle, Wolfgang, 2021. "Rodeo or ascot: Which hat to wear at the crypto race?," IRTG 1792 Discussion Papers 2021-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.
    3. Matic, Jovanka Lili & Packham, Natalie & Härdle, Wolfgang Karl, 2021. "Hedging Cryptocurrency Options," MPRA Paper 110985, University Library of Munich, Germany.
    4. Jovanka Lili Matic & Natalie Packham & Wolfgang Karl Härdle, 2023. "Hedging cryptocurrency options," Review of Derivatives Research, Springer, vol. 26(1), pages 91-133, April.
    5. Kim, Alisa & Trimborn, Simon & Härdle, Wolfgang Karl, 2021. "VCRIX — A volatility index for crypto-currencies," International Review of Financial Analysis, Elsevier, vol. 78(C).
    6. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    7. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    8. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    9. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    10. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    11. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    12. Lin, Min-Bin & Khowaja, Kainat & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl, 2020. "Blockchain mechanism and distributional characteristics of cryptos," IRTG 1792 Discussion Papers 2020-027, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    14. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
    15. Lin, Yueh-Neng & Chang, Chien-Hung, 2010. "Consistent modeling of S&P 500 and VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2302-2319, November.
    16. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    17. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    18. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    19. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    20. Bjørn Eraker & Aoxiang Yang, 2022. "The Price of Higher Order Catastrophe Insurance: The Case of VIX Options," Journal of Finance, American Finance Association, vol. 77(6), pages 3289-3337, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.12461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.