IDEAS home Printed from https://ideas.repec.org/a/spr/decisn/v47y2020i1d10.1007_s40622-020-00233-x.html
   My bibliography  Save this article

Product attributes based on customer’s perception and their effect on customer satisfaction: the Kano analysis of mobile brands

Author

Listed:
  • D. K. Choudhury

    (Guru Gobind Singh Indraprastha University)

  • Uma Gulati

    (Guru Gobind Singh Indraprastha University)

Abstract

The mobile phone has helped in expediting business operations. At this moment, Samsung brand is popular and Apple brand is gradually earning popularity in our country. This research work was carried out in Delhi to find out which attributes and what combination of different features of iPhone are best preferred by the customers. The Kano model and the conjoint analysis were used to come out with the strongest drivers of purchasing mobiles. It is necessary for mobile manufacturers to carefully analyse the customer’s need in this direction. It has been found from the study that the iPhone combination with iOS 11, 5.5 inch plus touch screen, 32 GB storage, 2900 mAh battery, 7 MP front camera, 8 MP rear camera and price less than 26,000 is the best preferred combination.

Suggested Citation

  • D. K. Choudhury & Uma Gulati, 2020. "Product attributes based on customer’s perception and their effect on customer satisfaction: the Kano analysis of mobile brands," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(1), pages 49-60, March.
  • Handle: RePEc:spr:decisn:v:47:y:2020:i:1:d:10.1007_s40622-020-00233-x
    DOI: 10.1007/s40622-020-00233-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40622-020-00233-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40622-020-00233-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grigoroudis, E. & Siskos, Y., 2002. "Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method," European Journal of Operational Research, Elsevier, vol. 143(1), pages 148-170, November.
    2. Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
    3. Basfirinci, Cigdem & Mitra, Amitava, 2015. "A cross cultural investigation of airlines service quality through integration of Servqual and the Kano model," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 239-248.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiya Xu & Ha-young Song, 2024. "Key Factors Influencing Chinese Consumers’ Demand for Naturally Dyed Garments: Data Analysis through KJ Method and KANO Model," Sustainability, MDPI, vol. 16(3), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    2. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    3. Tsafarakis, Stelios & Kokotas, Theodosios & Pantouvakis, Angelos, 2018. "A multiple criteria approach for airline passenger satisfaction measurement and service quality improvement," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 61-75.
    4. Winfried Steiner & Harald Hruschka, 2002. "A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data," Review of Marketing Science Working Papers 1-4-1003, Berkeley Electronic Press.
    5. Merja Halme & Kari Linden & Kimmo Kääriä, 2009. "Patients’ Preferences for Generic and Branded Over-the-Counter Medicines," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 2(4), pages 243-255, December.
    6. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    7. Xingli Wu & Huchang Liao & Chonghui Zhang, 2024. "Importance-performance analysis to develop product/service improvement strategies through online reviews with reliability," Annals of Operations Research, Springer, vol. 342(3), pages 1905-1924, November.
    8. Fusco, Elisa, 2023. "Potential improvements approach in composite indicators construction: The Multi-directional Benefit of the Doubt model," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    9. Xue, Hong & Mainville, Denise Y. & You, Wen & Nayga, Rodolfo M., Jr., 2009. "Nutrition Knowledge, Sensory Characteristics and Consumers’ Willingness to Pay for Pasture-Fed Beef," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49277, Agricultural and Applied Economics Association.
    10. Barbara Baarsma, 2003. "The Valuation of the IJmeer Nature Reserve using Conjoint Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(3), pages 343-356, July.
    11. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.
    12. Kowalska-Pyzalska, Anna & Michalski, Rafał & Kott, Marek & Skowrońska-Szmer, Anna & Kott, Joanna, 2022. "Consumer preferences towards alternative fuel vehicles. Results from the conjoint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    14. Horna, J. Daniela & Smale, Melinda & von Oppen, Matthias, 2005. "Private Participation In Agricultural Extension In Nigeria And Benin: Determining The Willingness To Pay For Information," 2005 Annual meeting, July 24-27, Providence, RI 19401, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Evangelia Karasmanaki & Evangelos Grigoroudis & Spyridon Galatsidas & Georgios Tsantopoulos, 2023. "Satisfaction with Media Information about Renewable Energy Investments," Sustainability, MDPI, vol. 15(15), pages 1-15, July.
    16. Chandra Mahapatra, Subas & Bellamkonda, Raja Shekhar, 2023. "Higher expectations of passengers do really sense: Development and validation a multiple scale-FliQual for air transport service quality," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    17. John Liechty & Duncan Fong & Eelko Huizingh & Arnaud Bruyn, 2008. "Hierarchical Bayesian conjoint models incorporating measurement uncertainty," Marketing Letters, Springer, vol. 19(2), pages 141-155, June.
    18. Christian P Theurer & Andranik Tumasjan & Isabell M Welpe, 2018. "Contextual work design and employee innovative work behavior: When does autonomy matter?," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-35, October.
    19. Kannika Thampanishvong, 2013. "Determinants of Flash Flood Evacuation Choices and Assessment of Preferences for Flash Flood Warning Channels: The Case of Thailand," EEPSEA Research Report rr2013034, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2013.
    20. Teichert, Thorsten Andreas, 1997. "Schätzgenauigkeit von Conjoint-Analysen," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 444, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    More about this item

    Keywords

    Conjoint analysis; Customer preference; Feature; iPhone; Kano model; Mobile phone;
    All these keywords.

    JEL classification:

    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decisn:v:47:y:2020:i:1:d:10.1007_s40622-020-00233-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.