IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v84y2023i3d10.1007_s10589-022-00439-y.html
   My bibliography  Save this article

T-product factorization based method for matrix and tensor completion problems

Author

Listed:
  • Quan Yu

    (Hunan University)

  • Xinzhen Zhang

    (Tianjin University)

Abstract

Low rank matrix and tensor completion problems are to recover the incomplete two and higher order data of low rank structures. The essential problem in the matrix and tensor completion problems is how to improve the efficiency. For a matrix completion problem, we establish a relationship between matrix rank and tensor tubal rank, and reformulate matrix completion problem as a third order tensor completion problem. For the reformulated tensor completion problem, we adopt a two-stage strategy based on tensor factorization algorithm. In this way, a matrix completion problem of big size can be solved via some matrix computations of smaller sizes. For a third order tensor completion problem, to fully exploit the low rank structures, we introduce the double tubal rank which combines the tubal rank of two tensors, original tensor and the reshaped tensor of the mode-3 unfolding matrix of original tensor. Based on this, we propose a reweighted tensor factorization algorithm for third order tensor completion. Extensive numerical experiments demonstrate that the proposed methods outperform state-of-the-art methods in terms of both accuracy and running time.

Suggested Citation

  • Quan Yu & Xinzhen Zhang, 2023. "T-product factorization based method for matrix and tensor completion problems," Computational Optimization and Applications, Springer, vol. 84(3), pages 761-788, April.
  • Handle: RePEc:spr:coopap:v:84:y:2023:i:3:d:10.1007_s10589-022-00439-y
    DOI: 10.1007/s10589-022-00439-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00439-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00439-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-Fan Li & Kun Shang & Zheng-Hai Huang, 2019. "A singular value p-shrinkage thresholding algorithm for low rank matrix recovery," Computational Optimization and Applications, Springer, vol. 73(2), pages 453-476, June.
    2. Chen Ling & Gaohang Yu & Liqun Qi & Yanwei Xu, 2021. "T-product factorization method for internet traffic data completion with spatio-temporal regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 883-913, December.
    3. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    4. Quan Yu & Xinzhen Zhang, 2022. "A smoothing proximal gradient algorithm for matrix rank minimization problem," Computational Optimization and Applications, Springer, vol. 81(2), pages 519-538, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi-Wei Wang & Guang-Xin Huang & Feng Yin, 2024. "Tensor Conjugate Gradient Methods with Automatically Determination of Regularization Parameters for Ill-Posed Problems with t-Product," Mathematics, MDPI, vol. 12(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Meyners, Michael & Qannari, El Mostafa, 2001. "Relating principal component analysis on merged data sets to a regression approach," Technical Reports 2001,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    4. DELL'ANNO, Roberto & VILLA, Stefania, 2012. "Growth in Transition Countries: Big Bang versus Gradualism," CELPE Discussion Papers 122, CELPE - CEnter for Labor and Political Economics, University of Salerno, Italy.
    5. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    6. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    7. Pieter M. Kroonenberg & Cornelis J. Lammers & Ineke Stoop, 1985. "Three-Mode Principal Component Analysis of Multivariate Longitudinal Organizational Data," Sociological Methods & Research, , vol. 14(2), pages 99-136, November.
    8. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    9. Xinhai Liu & Wolfgang Glänzel & Bart De Moor, 2011. "Hybrid clustering of multi-view data via Tucker-2 model and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 819-839, September.
    10. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    11. Dawn Iacobucci & Doug Grisaffe, 2018. "Perceptual maps via enhanced correspondence analysis: representing confidence regions to clarify brand positions," Journal of Marketing Analytics, Palgrave Macmillan, vol. 6(3), pages 72-83, September.
    12. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A least squares approach to Principal Component Analysis for interval valued data," Economics & Statistics Discussion Papers esdp03013, University of Molise, Department of Economics.
    13. Serrano Cinca, C. & Mar Molinero, C. & Gallizo Larraz, J.L., 2005. "Country and size effects in financial ratios: A European perspective," Global Finance Journal, Elsevier, vol. 16(1), pages 26-47, August.
    14. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    15. Rizzi, Alfredo & Vichi, Maurizio, 1995. "Representation, synthesis, variability and data preprocessing of a three-way data set," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 203-222, February.
    16. Eric Jondeau & Emmanuel Jurczenko & Michael Rockinger, 2018. "Moment Component Analysis: An Illustration With International Stock Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 576-598, October.
    17. Kunz, Werner, 2007. "Visualization of competitive market structure by means of choice data," SFB 649 Discussion Papers 2007-032, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. S. Lipovetsky, 2009. "Global Priority Estimation in Multiperson Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 77-91, January.
    19. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    20. Modroño Herrán, Juan Ignacio & Fernández Aguirre, María Carmen & Landaluce Calvo, M. Isabel, 2003. "Una propuesta para el análisis de tablas múltiples," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:84:y:2023:i:3:d:10.1007_s10589-022-00439-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.