IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v88y2011i3d10.1007_s11192-011-0348-3.html
   My bibliography  Save this article

Hybrid clustering of multi-view data via Tucker-2 model and its application

Author

Listed:
  • Xinhai Liu

    (Wuhan University of Science and Technology
    Katholieke Universiteit Leuven)

  • Wolfgang Glänzel

    (Katholieke Universiteit Leuven
    Hungarian Academy of Sciences)

  • Bart De Moor

    (Katholieke Universiteit Leuven)

Abstract

With the modern technology fast developing, most of entities can be observed by different perspectives. These multiple view information allows us to find a better pattern as long as we integrate them in an appropriate way. So clustering by integrating multi-view representations that describe the same class of entities has become a crucial issue for knowledge discovering. We integrate multi-view data by a tensor model and present a hybrid clustering method based on Tucker-2 model, which can be regarded as an extension of spectral clustering. We apply our hybrid clustering method to scientific publication analysis by integrating citation-link and lexical content. Clustering experiments are conducted on a large-scale journal set retrieved from the Web of Science (WoS) database. Several relevant hybrid clustering methods are cross compared with our method. The analysis of clustering results demonstrate the effectiveness of the proposed algorithm. Furthermore, we provide a cognitive analysis of the clustering results as well as the visualization as a mapping of the journal set.

Suggested Citation

  • Xinhai Liu & Wolfgang Glänzel & Bart De Moor, 2011. "Hybrid clustering of multi-view data via Tucker-2 model and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 819-839, September.
  • Handle: RePEc:spr:scient:v:88:y:2011:i:3:d:10.1007_s11192-011-0348-3
    DOI: 10.1007/s11192-011-0348-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0348-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-011-0348-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinhai Liu & Shi Yu & Frizo Janssens & Wolfgang Glänzel & Yves Moreau & Bart De Moor, 2010. "Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(6), pages 1105-1119, June.
    2. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    3. He, Xiaofeng & Zha, Hongyuan & H.Q. Ding, Chris & D. Simon, Horst, 2002. "Web document clustering using hyperlink structures," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 19-45, November.
    4. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    5. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    6. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Zhu & Junjie Zhang & Scott W. Cunningham, 2022. "Domain expertise extraction for finding rising stars," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5475-5495, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    2. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    3. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    4. Rey-Long Liu, 2015. "Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    5. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.
    6. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    7. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    8. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    9. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    10. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    11. Toshiyuki Hasumi & Mei-Shiu Chiu, 2022. "Online mathematics education as bio-eco-techno process: bibliometric analysis using co-authorship and bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4631-4654, August.
    12. Astrid Kainzbauer & Parisa Rungruang & Philip Hallinger, 2021. "How Does Research on Sustainable Human Resource Management Contribute to Corporate Sustainability: A Document Co-Citation Analysis, 1982–2021," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    13. Rui Li & Hong Zhang & Chenguang Liu & Zhenyu Cheryl Qian & Linghao Zhang, 2022. "Bibliometric and Visualized Analysis of User Experience Design Research: From 1999 to 2019," SAGE Open, , vol. 12(1), pages 21582440221, March.
    14. Diego Kozlowski & Jennifer Dusdal & Jun Pang & Andreas Zilian, 2021. "Semantic and relational spaces in science of science: deep learning models for article vectorisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5881-5910, July.
    15. Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
    16. Mingchun Cao & Ilan Alon, 2020. "Intellectual Structure of the Belt and Road Initiative Research: A Scientometric Analysis and Suggestions for a Future Research Agenda," Sustainability, MDPI, vol. 12(17), pages 1-40, August.
    17. Jan Lampe & Priscilla Sarai Kraft & Andreas Bausch, 2020. "Mapping the Field of Research on Entrepreneurial Organizations (1937–2016): A Bibliometric Analysis and Research Agenda," Entrepreneurship Theory and Practice, , vol. 44(4), pages 784-816, July.
    18. Myriam Ertz & Sébastien Leblanc-Proulx, 2019. "Review of a proposed methodology for bibliometric and visualization analyses for organizations: application to the collaboration economy," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(2), pages 84-93, June.
    19. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    20. Sohrabi, Babak & Khalilijafarabad, Ahmad, 2018. "Systematic method for finding emergence research areas as data quality," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 280-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:88:y:2011:i:3:d:10.1007_s11192-011-0348-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.