IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1043.html
   My bibliography  Save this paper

Moment Component Analysis: An Illustration with International Stock Markets

Author

Listed:
  • Eric JONDEAU

    (University of Lausanne and Swiss Finance Institute)

  • Emmanuel JURCZENKO

    (ESCP EUROPES)

  • Michael ROCKINGER

    (University of Lausanne, Swiss Finance Institute and CEPR)

Abstract

It is well known that non-normality plays an important role in asset and risk management. However, handling a large number of assets has long been a challenge. In this paper, we present a statistical technique that extends Principal Component Analysis to higher moments such as skewness and kurtosis. This method allows us to identify factors that drive the co-skewness and co-kurtosis across assets. These factors have interesting interpretations, for instance as hedges against increases in volatility among certain assets. We illustrate this approach using 37 international stock indices sampled at weekly frequency, for a total of 763 observations. We assert that both the co-skewness and co-kurtosis structures can be summarized with a small number of factors. This method is both fast and able to handle large portfolios under non-normality. Estimations using a rolling window reveal interesting commonalities over the business cycle.

Suggested Citation

  • Eric JONDEAU & Emmanuel JURCZENKO & Michael ROCKINGER, 2010. "Moment Component Analysis: An Illustration with International Stock Markets," Swiss Finance Institute Research Paper Series 10-43, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1043
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=1694643
    Download Restriction: no

    File URL:
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kaminsky, Graciela L. & Reinhart, Carmen M., 2002. "Financial markets in times of stress," Journal of Development Economics, Elsevier, vol. 69(2), pages 451-470, December.
    2. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    3. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    4. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    5. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    6. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    7. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    8. de Athayde, Gustavo M. & Flores, Renato Jr., 2004. "Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1335-1352, April.
    9. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyao Wu & Difang Huang & Muzi Chen, 2024. "Estimating Contagion Mechanism in Global Equity Market with Time-Zone Effect," Papers 2404.04335, arXiv.org.
    2. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Boudt, Kris & Cornilly, Dries & Verdonck, Tim, 2020. "Nearest comoment estimation with unobserved factors," Journal of Econometrics, Elsevier, vol. 217(2), pages 381-397.
    4. Junrui Di & Adam Spira & Jiawei Bai & Jacek Urbanek & Andrew Leroux & Mark Wu & Susan Resnick & Eleanor Simonsick & Luigi Ferrucci & Jennifer Schrack & Vadim Zipunnikov, 2019. "Joint and Individual Representation of Domains of Physical Activity, Sleep, and Circadian Rhythmicity," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 371-402, July.
    5. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    6. Wanbo Lu & Guanglin Huang & Kris Boudt, 2024. "Estimation of Non-Gaussian Factors Using Higher-order Multi-cumulants in Weak Factor Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 24/1085, Ghent University, Faculty of Economics and Business Administration.
    7. Wang, Peiwen & Huang, Guanglin, 2024. "Measuring systemic risk contribution: A higher-order moment augmented approach," Finance Research Letters, Elsevier, vol. 59(C).
    8. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    9. Boyao Wu & Difang Huang & Muzi Chen, 2023. "Estimating contagion mechanism in global equity market with time‐zone effect," Financial Management, Financial Management Association International, vol. 52(3), pages 543-572, September.
    10. Díaz, Antonio & Escribano, Ana & Esparcia, Carlos, 2024. "Sustainable risk preferences on asset allocation: a higher order optimal portfolio study," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chonghui & Ma, Yongkai & An, Yunbi, 2016. "Portfolio selection with a systematic skewness constraint," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 393-405.
    2. Dahlquist, Magnus & Tédongap, Roméo & Farago, Adam, 2015. "Asymmetries and Portfolio Choice," CEPR Discussion Papers 10706, C.E.P.R. Discussion Papers.
    3. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    4. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    5. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    6. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    7. Massimo Guidolin & Giovanna Nicodano, 2010. "Ex Post Portfolio Performance with Predictable Skewness and Kurtosis," Carlo Alberto Notebooks 191, Collegio Carlo Alberto.
    8. Paul Karehnke & Frans de Roon, 2020. "Spanning Tests for Assets with Option-Like Payoffs: The Case of Hedge Funds," Management Science, INFORMS, vol. 66(12), pages 5969-5989, December.
    9. Ayub, Usman & Shah, Syed Zulfiqar Ali & Abbas, Qaisar, 2015. "Robust analysis for downside risk in portfolio management for a volatile stock market," Economic Modelling, Elsevier, vol. 44(C), pages 86-96.
    10. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    11. Eric Jondeau & Michael Rockinger, 2005. "Conditional Asset Allocation under Non-Normality: How Costly is the Mean-Variance Criterion?," FAME Research Paper Series rp132, International Center for Financial Asset Management and Engineering.
    12. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    13. Krüger, Jens J., 2024. "Nonparametric portfolio efficiency measurement with higher moments," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 144371, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Sévi, Benoît, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Economic Modelling, Elsevier, vol. 31(C), pages 189-197.
    15. Le, Trung H., 2021. "International portfolio allocation: The role of conditional higher moments," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 33-57.
    16. Massimo Guidolin & Giovanna Nicodano, 2007. "Managing international portfolios with small capitalization stocks," Working Papers 2007-030, Federal Reserve Bank of St. Louis.
    17. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    18. Benjamin Bruder & Nazar Kostyuchyk & Thierry Roncalli, 2022. "Risk Parity Portfolios with Skewness Risk: An Application to Factor Investing and Alternative Risk Premia," Papers 2202.10721, arXiv.org.
    19. Dias, Alexandra, 2016. "The economic value of controlling for large losses in portfolio selection," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 81-91.
    20. Krüger, Jens J., 2021. "Nonparametric portfolio efficiency measurement with higher moments," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 130825, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).

    More about this item

    Keywords

    PCA; ICA; Skewness; Kurtosis; Portfolio analysis; Tensor; HOOI; Random Matrix Theory;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.