IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i3d10.1007_s10878-021-00795-1.html
   My bibliography  Save this article

Advancing local search approximations for multiobjective combinatorial optimization problems

Author

Listed:
  • Lakmali Weerasena

    (University of Tennessee at Chattanooga)

Abstract

This study proposes a theoretical framework for defining approximations of the Pareto sets of multiobjective combinatorial optimization (MOCO) problems. The concept of t-representation is proposed for modeling the approximation quality and describes a local search algorithm to produce a t-representation. Unlike the current local search algorithms found in the literature, the proposed algorithm yields a representation for the Pareto set with a mathematically proven error term (quality). The algorithm starts with an initial representation containing efficient solutions. The approximation quality is derived mathematically and is measured using a tolerance function that depends on the cost coefficients of the problem and the initial representation. The computational experiments are conducted using two types of MOCO problems (multiobjective set covering problem and multiobjective knapsack problem). The computational results demonstrate that this algorithm significantly outperforms the initial representation, obeys the theoretical bounds, and efficiently solves MOCO problems.

Suggested Citation

  • Lakmali Weerasena, 2022. "Advancing local search approximations for multiobjective combinatorial optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 589-612, April.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:3:d:10.1007_s10878-021-00795-1
    DOI: 10.1007/s10878-021-00795-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00795-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00795-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Erlebach & Hans Kellerer & Ulrich Pferschy, 2002. "Approximating Multiobjective Knapsack Problems," Management Science, INFORMS, vol. 48(12), pages 1603-1612, December.
    2. Soylu, Banu, 2015. "Heuristic approaches for biobjective mixed 0–1 integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 690-703.
    3. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    4. Lakmali Weerasena & Margaret M. Wiecek & Banu Soylu, 2017. "An algorithm for approximating the Pareto set of the multiobjective set covering problem," Annals of Operations Research, Springer, vol. 248(1), pages 493-514, January.
    5. Daniel Vanderpooten & Lakmali Weerasena & Margaret M. Wiecek, 2017. "Covers and approximations in multiobjective optimization," Journal of Global Optimization, Springer, vol. 67(3), pages 601-619, March.
    6. I. Kaliszewski & J. Miroforidis, 2018. "On upper approximations of Pareto fronts," Journal of Global Optimization, Springer, vol. 72(3), pages 475-490, November.
    7. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria combinatorial optimization," Working papers 3756-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    8. Bazgan, Cristina & Jamain, Florian & Vanderpooten, Daniel, 2017. "Discrete representation of the non-dominated set for multi-objective optimization problems using kernels," European Journal of Operational Research, Elsevier, vol. 260(3), pages 814-827.
    9. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakmali Weerasena & Aniekan Ebiefung & Anthony Skjellum, 2022. "Design of a heuristic algorithm for the generalized multi-objective set covering problem," Computational Optimization and Applications, Springer, vol. 82(3), pages 717-751, July.
    2. Arne Herzel & Stefan Ruzika & Clemens Thielen, 2021. "Approximation Methods for Multiobjective Optimization Problems: A Survey," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1284-1299, October.
    3. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    4. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    5. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    6. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2007. "Approximation of min-max and min-max regret versions of some combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 179(2), pages 281-290, June.
    7. Bazgan, Cristina & Hugot, Hadrien & Vanderpooten, Daniel, 2009. "Implementing an efficient fptas for the 0-1 multi-objective knapsack problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 47-56, October.
    8. Florios, Kostas & Mavrotas, George, 2014. "Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems," MPRA Paper 105074, University Library of Munich, Germany.
    9. Podinovski, Vladislav V., 2013. "Non-dominance and potential optimality for partial preference relations," European Journal of Operational Research, Elsevier, vol. 229(2), pages 482-486.
    10. Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
    11. Fritz Bökler & Markus Chimani & Mirko H. Wagner, 2022. "On the rectangular knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 149-160, August.
    12. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    13. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    14. George Kozanidis, 2009. "Solving the linear multiple choice knapsack problem with two objectives: profit and equity," Computational Optimization and Applications, Springer, vol. 43(2), pages 261-294, June.
    15. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    16. Shahryar Rahnamayan & Sedigheh Mahdavi & Kalyanmoy Deb & Azam Asilian Bidgoli, 2020. "Ranking Multi-Metric Scientific Achievements Using a Concept of Pareto Optimality," Mathematics, MDPI, vol. 8(6), pages 1-46, June.
    17. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    18. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    19. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    20. Luis Paquete & Tommaso Schiavinotto & Thomas Stützle, 2007. "On local optima in multiobjective combinatorial optimization problems," Annals of Operations Research, Springer, vol. 156(1), pages 83-97, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:3:d:10.1007_s10878-021-00795-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.