IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v245y2015i3p690-703.html
   My bibliography  Save this article

Heuristic approaches for biobjective mixed 0–1 integer linear programming problems

Author

Listed:
  • Soylu, Banu

Abstract

In this study, biobjective mixed 0–1 integer linear programming problems are considered and two heuristic approaches are presented to find the Pareto frontier of these problems. The first heuristic is a variant of the variable neighborhood search and explores the k-neighbors of a feasible solution (in terms of binary variables) to find the extreme supported Pareto points. The second heuristic is adapted from the local branching method, which is well-known in single objective mixed 0–1 integer linear programming. Finally, an algorithm is proposed to find Pareto segments of outcome line segments of these heuristics. A computational analysis is performed by using some test problems from the literature and the results are presented.

Suggested Citation

  • Soylu, Banu, 2015. "Heuristic approaches for biobjective mixed 0–1 integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 690-703.
  • Handle: RePEc:eee:ejores:v:245:y:2015:i:3:p:690-703
    DOI: 10.1016/j.ejor.2015.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715002829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. L. Yuf & M. Zeleny, 1976. "Linear Multiparametric Programming by Multicriteria Simplex Method," Management Science, INFORMS, vol. 23(2), pages 159-170, October.
    2. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    3. Elias Olivares-Benitez & José González-Velarde & Roger Ríos-Mercado, 2012. "A supply chain design problem with facility location and bi-objective transportation choices," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 729-753, October.
    4. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    5. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babu, Sona & Girish, B.S., 2024. "Pareto-optimal front generation for the bi-objective JIT scheduling problems with a piecewise linear trade-off between objectives," Operations Research Perspectives, Elsevier, vol. 12(C).
    2. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    3. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    4. Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
    5. Lakmali Weerasena, 2022. "Advancing local search approximations for multiobjective combinatorial optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 589-612, April.
    6. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    7. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    8. Lakmali Weerasena & Aniekan Ebiefung & Anthony Skjellum, 2022. "Design of a heuristic algorithm for the generalized multi-objective set covering problem," Computational Optimization and Applications, Springer, vol. 82(3), pages 717-751, July.
    9. Lakmali Weerasena & Margaret M. Wiecek & Banu Soylu, 2017. "An algorithm for approximating the Pareto set of the multiobjective set covering problem," Annals of Operations Research, Springer, vol. 248(1), pages 493-514, January.
    10. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
    11. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    2. Diego Pecin & Ian Herszterg & Tyler Perini & Natashia Boland & Martin Savelsbergh, 2024. "A fast and robust algorithm for solving biobjective mixed integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 221-262, August.
    3. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    4. Przybylski, Anthony & Gandibleux, Xavier & Ehrgott, Matthias, 2008. "Two phase algorithms for the bi-objective assignment problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 509-533, March.
    5. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Mixed Integer Programming: The Triangle Splitting Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 597-618, November.
    6. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    7. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
    8. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    9. Sedeno-Noda, A. & Gonzalez-Martin, C., 2000. "The biobjective minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 124(3), pages 591-600, August.
    10. Esmaeili, Somayeh & Bashiri, Mahdi & Amiri, Amirhossein, 2023. "An exact criterion space search algorithm for a bi-objective blood collection problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 210-232.
    11. Markus Leitner & Ivana Ljubić & Markus Sinnl, 2015. "A Computational Study of Exact Approaches for the Bi-Objective Prize-Collecting Steiner Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 118-134, February.
    12. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
    13. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.
    14. Sophie N. Parragh & Fabien Tricoire, 2019. "Branch-and-Bound for Bi-objective Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 805-822, October.
    15. Tyler Perini & Natashia Boland & Diego Pecin & Martin Savelsbergh, 2020. "A Criterion Space Method for Biobjective Mixed Integer Programming: The Boxed Line Method," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 16-39, January.
    16. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    17. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    18. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    19. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    20. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:245:y:2015:i:3:p:690-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.