Douglas–Rachford splitting and ADMM for nonconvex optimization: accelerated and Newton-type linesearch algorithms
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-022-00366-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lorenzo Stella & Andreas Themelis & Panagiotis Patrinos, 2017. "Forward–backward quasi-Newton methods for nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 443-487, July.
- Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ziyuan Wang & Andreas Themelis & Hongjia Ou & Xianfu Wang, 2024. "A Mirror Inertial Forward–Reflected–Backward Splitting: Convergence Analysis Beyond Convexity and Lipschitz Smoothness," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1127-1159, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
- Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
- Pontus Giselsson & Mattias Fält, 2018. "Envelope Functions: Unifications and Further Properties," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 673-698, September.
- Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
- Ryosuke Shimmura & Joe Suzuki, 2024. "Newton-Type Methods with the Proximal Gradient Step for Sparse Estimation," SN Operations Research Forum, Springer, vol. 5(2), pages 1-27, June.
- Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
- Tianxiang Liu & Ting Kei Pong, 2017. "Further properties of the forward–backward envelope with applications to difference-of-convex programming," Computational Optimization and Applications, Springer, vol. 67(3), pages 489-520, July.
- Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
- Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
- Weiwei Kong & Renato D. C. Monteiro, 2023. "An accelerated inexact dampened augmented Lagrangian method for linearly-constrained nonconvex composite optimization problems," Computational Optimization and Applications, Springer, vol. 85(2), pages 509-545, June.
- Jefferson G. Melo & Renato D. C. Monteiro & Hairong Wang, 2024. "A Proximal Augmented Lagrangian Method for Linearly Constrained Nonconvex Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 388-420, July.
- Bastian Pötzl & Anton Schiela & Patrick Jaap, 2022. "Second order semi-smooth Proximal Newton methods in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 82(2), pages 465-498, June.
- Yue Xie & Uday V. Shanbhag, 2021. "Tractable ADMM schemes for computing KKT points and local minimizers for $$\ell _0$$ ℓ 0 -minimization problems," Computational Optimization and Applications, Springer, vol. 78(1), pages 43-85, January.
- Xihua Zhu & Jiangze Han & Bo Jiang, 2022. "An adaptive high order method for finding third-order critical points of nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 369-392, October.
- Maryam Yashtini, 2021. "Multi-block Nonconvex Nonsmooth Proximal ADMM: Convergence and Rates Under Kurdyka–Łojasiewicz Property," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 966-998, September.
- Ghaderi, Susan & Ahookhosh, Masoud & Arany, Adam & Skupin, Alexander & Patrinos, Panagiotis & Moreau, Yves, 2024. "Smoothing unadjusted Langevin algorithms for nonsmooth composite potential functions," Applied Mathematics and Computation, Elsevier, vol. 464(C).
- Wu, Dawen & Lisser, Abdel, 2024. "Solving Constrained Pseudoconvex Optimization Problems with deep learning-based neurodynamic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 424-434.
- Tianxiang Liu & Akiko Takeda, 2022. "An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems," Computational Optimization and Applications, Springer, vol. 82(1), pages 141-173, May.
- Aviad Aberdam & Amir Beck, 2022. "An Accelerated Coordinate Gradient Descent Algorithm for Non-separable Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 219-246, June.
- Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
More about this item
Keywords
Nonsmooth nonconvex optimization; Douglas–Rachford splitting; ADMM; Quasi-Newton methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:82:y:2022:i:2:d:10.1007_s10589-022-00366-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.