IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v181y2019i2d10.1007_s10957-019-01477-z.html
   My bibliography  Save this article

An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance

Author

Listed:
  • Yanli Liu

    (University of California, Los Angeles)

  • Wotao Yin

    (University of California, Los Angeles)

Abstract

It is known that operator splitting methods based on forward–backward splitting, Douglas–Rachford splitting, and Davis–Yin splitting decompose difficult optimization problems into simpler subproblems under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an objective function), whose gradient descent iteration under a variable metric coincides with Davis–Yin splitting iteration. This result generalizes the Moreau envelope for proximal-point iteration and the envelopes for forward–backward splitting and Douglas–Rachford splitting iterations identified by Patrinos, Stella, and Themelis. Based on the new envelope and the stable–center manifold theorem, we further show that, when forward–backward splitting or Douglas–Rachford splitting iterations start from random points, they avoid all strict saddle points with probability one. This result extends the similar results by Lee et al. from gradient descent to splitting methods.

Suggested Citation

  • Yanli Liu & Wotao Yin, 2019. "An Envelope for Davis–Yin Splitting and Strict Saddle-Point Avoidance," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 567-587, May.
  • Handle: RePEc:spr:joptap:v:181:y:2019:i:2:d:10.1007_s10957-019-01477-z
    DOI: 10.1007/s10957-019-01477-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01477-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01477-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorenzo Stella & Andreas Themelis & Panagiotis Patrinos, 2017. "Forward–backward quasi-Newton methods for nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 443-487, July.
    2. Pontus Giselsson & Mattias Fält, 2018. "Envelope Functions: Unifications and Further Properties," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 673-698, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaderi, Susan & Ahookhosh, Masoud & Arany, Adam & Skupin, Alexander & Patrinos, Panagiotis & Moreau, Yves, 2024. "Smoothing unadjusted Langevin algorithms for nonsmooth composite potential functions," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    2. Aviad Aberdam & Amir Beck, 2022. "An Accelerated Coordinate Gradient Descent Algorithm for Non-separable Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 219-246, June.
    3. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    4. Pontus Giselsson & Mattias Fält, 2018. "Envelope Functions: Unifications and Further Properties," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 673-698, September.
    5. Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
    6. Ryosuke Shimmura & Joe Suzuki, 2024. "Newton-Type Methods with the Proximal Gradient Step for Sparse Estimation," SN Operations Research Forum, Springer, vol. 5(2), pages 1-27, June.
    7. Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
    8. Tianxiang Liu & Ting Kei Pong, 2017. "Further properties of the forward–backward envelope with applications to difference-of-convex programming," Computational Optimization and Applications, Springer, vol. 67(3), pages 489-520, July.
    9. Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
    10. Andreas Themelis & Lorenzo Stella & Panagiotis Patrinos, 2022. "Douglas–Rachford splitting and ADMM for nonconvex optimization: accelerated and Newton-type linesearch algorithms," Computational Optimization and Applications, Springer, vol. 82(2), pages 395-440, June.
    11. Bastian Pötzl & Anton Schiela & Patrick Jaap, 2022. "Second order semi-smooth Proximal Newton methods in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 82(2), pages 465-498, June.
    12. Tianxiang Liu & Akiko Takeda, 2022. "An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems," Computational Optimization and Applications, Springer, vol. 82(1), pages 141-173, May.
    13. Luyun Wang & Bo Zhou, 2023. "A Modified Gradient Method for Distributionally Robust Logistic Regression over the Wasserstein Ball," Mathematics, MDPI, vol. 11(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:181:y:2019:i:2:d:10.1007_s10957-019-01477-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.