IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v79y2021i3d10.1007_s10589-021-00281-8.html
   My bibliography  Save this article

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Author

Listed:
  • R. Andreani

    (University of Campinas)

  • E. H. Fukuda

    (Kyoto University)

  • G. Haeser

    (University of São Paulo)

  • D. O. Santos

    (Federal University of São Paulo)

  • L. D. Secchin

    (Federal University of Espírito Santo)

Abstract

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate complementarity measure in this context is typically defined in terms of the eigenvalues of the constraint matrix and the eigenvalues of an approximate Lagrange multiplier. By exploiting the Jordan Algebra structure of the problem, we show that a simpler complementarity measure, defined in terms of the Jordan product, is stronger than the one defined in terms of eigenvalues. Thus, besides avoiding a tricky analysis of eigenvalues, a stronger necessary optimality condition is presented. We then prove the global convergence of an Augmented Lagrangian algorithm to this improved necessary optimality condition. The results are also extended to an interior point method. The optimality conditions we present are sequential ones, and no constraint qualification is employed; in particular, a global convergence result is available even when Lagrange multipliers are unbounded.

Suggested Citation

  • R. Andreani & E. H. Fukuda & G. Haeser & D. O. Santos & L. D. Secchin, 2021. "On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 79(3), pages 633-648, July.
  • Handle: RePEc:spr:coopap:v:79:y:2021:i:3:d:10.1007_s10589-021-00281-8
    DOI: 10.1007/s10589-021-00281-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00281-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00281-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. M. Martínez & E. A. Pilotta, 2000. "Inexact-Restoration Algorithm for Constrained Optimization1," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 135-163, January.
    2. Hiroshi Konno & Naoya Kawadai & Dai Wu, 2003. "Estimation of failure probability using semi-definite logit model," Computational Management Science, Springer, vol. 1(1), pages 59-73, December.
    3. Gabriel Haeser & María Laura Schuverdt, 2011. "On Approximate KKT Condition and its Extension to Continuous Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 528-539, June.
    4. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    5. Gabriel Haeser, 2018. "A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms," Computational Optimization and Applications, Springer, vol. 70(2), pages 615-639, June.
    6. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    7. Bruno F. Lourenço & Ellen H. Fukuda & Masao Fukushima, 2018. "Optimality Conditions for Problems over Symmetric Cones and a Simple Augmented Lagrangian Method," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1233-1251, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    2. Renan W. Prado & Sandra A. Santos & Lucas E. A. Simões, 2023. "On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 705-736, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    2. Renan W. Prado & Sandra A. Santos & Lucas E. A. Simões, 2023. "On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 705-736, May.
    3. G. L. Yi & Y. K. Sui, 2016. "An Adaptive Approach to Adjust Constraint Bounds and its Application in Structural Topology Optimization," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 656-670, May.
    4. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    5. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    6. Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
    7. Shun Arahata & Takayuki Okuno & Akiko Takeda, 2023. "Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 555-598, November.
    8. J.M. Martínez & B.F. Svaiter, 2003. "A Practical Optimality Condition Without Constraint Qualifications for Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 117-133, July.
    9. Ernesto G. Birgin, 2020. "Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 615-619, July.
    10. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2014. "Some Notes on Approximate Optimality Conditions in Scalar and Vector Optimization Problems," DEM Working Papers Series 095, University of Pavia, Department of Economics and Management.
    11. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.
    12. Juliano B. Francisco & Douglas S. Gonçalves & Fermín S. V. Bazán & Lila L. T. Paredes, 2020. "Non-monotone inexact restoration method for nonlinear programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 867-888, July.
    13. Gabriel Haeser, 2018. "A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms," Computational Optimization and Applications, Springer, vol. 70(2), pages 615-639, June.
    14. Christian Kanzow & Andreas B. Raharja & Alexandra Schwartz, 2021. "Sequential optimality conditions for cardinality-constrained optimization problems with applications," Computational Optimization and Applications, Springer, vol. 80(1), pages 185-211, September.
    15. Cândida Silva & M. Monteiro, 2008. "A filter inexact-restoration method for nonlinear programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 126-146, July.
    16. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    17. Min Feng & Shengjie Li, 2018. "An approximate strong KKT condition for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 489-509, October.
    18. Ellen H. Fukuda & Bruno F. Lourenço, 2018. "Exact augmented Lagrangian functions for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 71(2), pages 457-482, November.
    19. Wolfgang Schadner, 2021. "Feasible Implied Correlation Matrices from Factor Structures," Papers 2107.00427, arXiv.org.
    20. M. D. Sánchez & M. L. Schuverdt, 2019. "A second-order convergence augmented Lagrangian method using non-quadratic penalty functions," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 390-408, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:79:y:2021:i:3:d:10.1007_s10589-021-00281-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.