IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v65y2016i3d10.1007_s10589-016-9849-6.html
   My bibliography  Save this article

Sequential equality-constrained optimization for nonlinear programming

Author

Listed:
  • E. G. Birgin

    (University of São Paulo)

  • L. F. Bueno

    (Federal University of São Paulo)

  • J. M. Martínez

    (State University of Campinas)

Abstract

A novel idea is proposed for solving optimization problems with equality constraints and bounds on the variables. In the spirit of sequential quadratic programming and sequential linearly-constrained programming, the new proposed approach approximately solves, at each iteration, an equality-constrained optimization problem. The bound constraints are handled in outer iterations by means of an augmented Lagrangian scheme. Global convergence of the method follows from well-established nonlinear programming theories. Numerical experiments are presented.

Suggested Citation

  • E. G. Birgin & L. F. Bueno & J. M. Martínez, 2016. "Sequential equality-constrained optimization for nonlinear programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 699-721, December.
  • Handle: RePEc:spr:coopap:v:65:y:2016:i:3:d:10.1007_s10589-016-9849-6
    DOI: 10.1007/s10589-016-9849-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9849-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9849-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elizabeth Karas & Elvio Pilotta & Ademir Ribeiro, 2009. "Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres problems," Computational Optimization and Applications, Springer, vol. 44(3), pages 427-441, December.
    2. Nahid Banihashemi & C. Yalçın Kaya, 2013. "Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 726-760, March.
    3. Ernesto G. Birgin & Emerson V. Castelani & André L. M. Martinez & J. M. Martínez, 2011. "Outer Trust-Region Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 142-155, July.
    4. Andreas Fischer & Ana Friedlander, 2010. "A new line search inexact restoration approach for nonlinear programming," Computational Optimization and Applications, Springer, vol. 46(2), pages 333-346, June.
    5. Juliano Francisco & J. Martínez & Leandro Martínez & Feodor Pisnitchenko, 2011. "Inexact restoration method for minimization problems arising in electronic structure calculations," Computational Optimization and Applications, Springer, vol. 50(3), pages 555-590, December.
    6. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    7. Emerson Castelani & André Martinez & J. Martínez & B. Svaiter, 2010. "Addressing the greediness phenomenon in Nonlinear Programming by means of Proximal Augmented Lagrangians," Computational Optimization and Applications, Springer, vol. 46(2), pages 229-245, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Armand & Ngoc Nguyen Tran, 2019. "An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 197-215, April.
    2. Luís Felipe Bueno & Gabriel Haeser & Luiz-Rafael Santos, 2020. "Towards an efficient augmented Lagrangian method for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 767-800, July.
    3. E. G. Birgin & G. Haeser & A. Ramos, 2018. "Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points," Computational Optimization and Applications, Springer, vol. 69(1), pages 51-75, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    2. Juliano B. Francisco & Douglas S. Gonçalves & Fermín S. V. Bazán & Lila L. T. Paredes, 2020. "Non-monotone inexact restoration method for nonlinear programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 867-888, July.
    3. E. Birgin & J. Martínez & L. Prudente, 2014. "Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming," Journal of Global Optimization, Springer, vol. 58(2), pages 207-242, February.
    4. E. G. Birgin & G. Haeser & A. Ramos, 2018. "Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points," Computational Optimization and Applications, Springer, vol. 69(1), pages 51-75, January.
    5. Nahid Banihashemi & C. Yalçın Kaya, 2013. "Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 726-760, March.
    6. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    7. Ernesto G. Birgin & Emerson V. Castelani & André L. M. Martinez & J. M. Martínez, 2011. "Outer Trust-Region Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 142-155, July.
    8. Regina S. Burachik & Alexander C. Kalloniatis & C. Yalçın Kaya, 2021. "Sparse Network Optimization for Synchronization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 229-251, October.
    9. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    10. C. Yalçın Kaya, 2017. "Markov–Dubins path via optimal control theory," Computational Optimization and Applications, Springer, vol. 68(3), pages 719-747, December.
    11. C. Kaya & Helmut Maurer, 2014. "A numerical method for nonconvex multi-objective optimal control problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 685-702, April.
    12. D. Fernández & E. Pilotta & G. Torres, 2013. "An inexact restoration strategy for the globalization of the sSQP method," Computational Optimization and Applications, Springer, vol. 54(3), pages 595-617, April.
    13. Qun Lin & Ryan Loxton & Kok Teo & Yong Wu, 2015. "Optimal control problems with stopping constraints," Journal of Global Optimization, Springer, vol. 63(4), pages 835-861, December.
    14. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:65:y:2016:i:3:d:10.1007_s10589-016-9849-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.