IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v75y2020i1d10.1007_s10589-019-00136-3.html
   My bibliography  Save this article

Modified Jacobian smoothing method for nonsmooth complementarity problems

Author

Listed:
  • Pin-Bo Chen

    (Shanghai University)

  • Peng Zhang

    (Chongqing University of Posts and Telecommunications)

  • Xide Zhu

    (Shanghai University)

  • Gui-Hua Lin

    (Shanghai University)

Abstract

This paper is devoted to solving a nonsmooth complementarity problem where the mapping is locally Lipschitz continuous but not continuously differentiable everywhere. We reformulate this nonsmooth complementarity problem as a system of nonsmooth equations with the max function and then propose an approximation to the reformulation by simultaneously smoothing the mapping and the max function. Based on the approximation, we present a modified Jacobian smoothing method for the nonsmooth complementarity problem. We show the Jacobian consistency of the function associated with the approximation, under which we establish the global and fast local convergence for the method under suitable assumptions. Finally, to show the effectiveness of the proposed method, we report our numerical experiments on some examples based on MCPLIB/GAMSLIB libraries or network Nash–Cournot game is proposed.

Suggested Citation

  • Pin-Bo Chen & Peng Zhang & Xide Zhu & Gui-Hua Lin, 2020. "Modified Jacobian smoothing method for nonsmooth complementarity problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 207-235, January.
  • Handle: RePEc:spr:coopap:v:75:y:2020:i:1:d:10.1007_s10589-019-00136-3
    DOI: 10.1007/s10589-019-00136-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00136-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00136-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Xu, 2001. "Adaptive Smoothing Method, Deterministically Computable Generalized Jacobians, and the Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 215-224, April.
    2. D. Ralph & H. Xu, 2005. "Implicit Smoothing and Its Application to Optimization with Piecewise Smooth Equality Constraints1," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 673-699, March.
    3. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    4. K. F. Ng & L. L. Tan, 2007. "D-Gap Functions for Nonsmooth Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 77-97, April.
    5. A. Fischer & V. Jeyakumar & D. T. Luc, 2001. "Solution Point Characterizations and Convergence Analysis of a Descent Algorithm for Nonsmooth Continuous Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 493-513, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pin-Bo Chen & Gui-Hua Lin & Xide Zhu & Fusheng Bai, 2021. "Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets," Journal of Global Optimization, Springer, vol. 80(3), pages 635-659, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    2. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    3. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    5. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    6. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    7. Victor DeMiguel & Huifu Xu, 2009. "A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application," Operations Research, INFORMS, vol. 57(5), pages 1220-1235, October.
    8. Denizalp Goktas & Jiayi Zhao & Amy Greenwald, 2023. "T\^atonnement in Homothetic Fisher Markets," Papers 2306.04890, arXiv.org.
    9. Amir Gandomi & Amirhossein Bazargan & Saeed Zolfaghari, 2019. "Designing competitive loyalty programs: a stochastic game-theoretic model to guide the choice of reward structure," Annals of Operations Research, Springer, vol. 280(1), pages 267-298, September.
    10. Vladimir Shikhman, 2022. "On local uniqueness of normalized Nash equilibria," Papers 2205.13878, arXiv.org.
    11. Ming Hu & Masao Fukushima, 2011. "Variational Inequality Formulation of a Class of Multi-Leader-Follower Games," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 455-473, December.
    12. Victor Picheny & Mickael Binois & Abderrahmane Habbal, 2019. "A Bayesian optimization approach to find Nash equilibria," Journal of Global Optimization, Springer, vol. 73(1), pages 171-192, January.
    13. Rahman Khorramfar & Osman Ozaltin & Reha Uzsoy & Karl Kempf, 2024. "Coordinating Resource Allocation during Product Transitions Using a Multifollower Bilevel Programming Model," Papers 2401.17402, arXiv.org.
    14. G. C. Bento & J. X. Cruz Neto & P. A. Soares & A. Soubeyran, 2022. "A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires," Annals of Operations Research, Springer, vol. 316(2), pages 1301-1318, September.
    15. Corine M. Laan & Judith Timmer & Richard J. Boucherie, 2021. "Non-cooperative queueing games on a network of single server queues," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 279-301, April.
    16. Trockel, Walter & Haake, Claus-Jochen, 2017. "Thoughts on social design," Center for Mathematical Economics Working Papers 577, Center for Mathematical Economics, Bielefeld University.
    17. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.
    18. Sonja Brangewitz & Gaël Giraud, 2012. "Learning by Trading in Infinite Horizon Strategic Market Games with Default," Documents de travail du Centre d'Economie de la Sorbonne 12062r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2013.
    19. Yann BRAOUEZEC & Keyvan KIANI, 2021. "Economic foundations of generalized games with shared constraint: Do binding agreements lead to less Nash equilibria?," Working Papers 2021-ACF-06, IESEG School of Management.
    20. E. Allevi & G. Oggioni & R. Riccardi & M. Rocco, 2017. "An equilibrium model for the cement sector: EU-ETS analysis with power contracts," Annals of Operations Research, Springer, vol. 255(1), pages 63-93, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:75:y:2020:i:1:d:10.1007_s10589-019-00136-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.