IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v109y2001i1d10.1023_a1017526207997.html
   My bibliography  Save this article

Adaptive Smoothing Method, Deterministically Computable Generalized Jacobians, and the Newton Method

Author

Listed:
  • H. Xu

Abstract

In this note, we show that a well-known integral method, which was used by Mayne and Polak to compute an ∈-subgradient, can be exploited to compute deterministically an element of the plenary hull of the Clarke generalized Jacobian of a locally Lipschitz mapping regardless of its structure. In particular, we show that, when a locally Lipschitz mapping is piecewise smooth, we are able to compute deterministically an element of the Clarke generalized Jacobian by the adaptive smoothing method. Consequently, we show that the Newton method based on the plenary hull of the Clarke generalized Jacobian can be implemented in a deterministic way for solving Lipschitz nonsmooth equations.

Suggested Citation

  • H. Xu, 2001. "Adaptive Smoothing Method, Deterministically Computable Generalized Jacobians, and the Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 215-224, April.
  • Handle: RePEc:spr:joptap:v:109:y:2001:i:1:d:10.1023_a:1017526207997
    DOI: 10.1023/A:1017526207997
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017526207997
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017526207997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Xu & X. W. Chang, 1997. "Approximate Newton Methods for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 373-394, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pin-Bo Chen & Peng Zhang & Xide Zhu & Gui-Hua Lin, 2020. "Modified Jacobian smoothing method for nonsmooth complementarity problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 207-235, January.
    2. D. Ralph & H. Xu, 2005. "Implicit Smoothing and Its Application to Optimization with Piecewise Smooth Equality Constraints1," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 673-699, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    2. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:109:y:2001:i:1:d:10.1023_a:1017526207997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.