IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v72y2019i2d10.1007_s10589-018-0042-y.html
   My bibliography  Save this article

A feasible rounding approach for mixed-integer optimization problems

Author

Listed:
  • Christoph Neumann

    (Karlsruhe Institute of Technology (KIT))

  • Oliver Stein

    (Karlsruhe Institute of Technology (KIT))

  • Nathan Sudermann-Merx

    (BASF Business Services GmbH)

Abstract

We introduce granularity as a sufficient condition for the consistency of a mixed-integer optimization problem, and show how to exploit it for the computation of feasible points: For optimization problems which are granular, solving certain linear problems and rounding their optimal points always leads to feasible points of the original mixed-integer problem. Thus, the resulting feasible rounding approach is deterministic and even efficient, i.e., it computes feasible points in polynomial time. The optimization problems appearing in the feasible rounding approaches have a structure that is similar to that of the continuous relaxation, and thus our approach has significant advantages over heuristics, as long as the problem is granular. For instance, the computational cost of our approach always corresponds to merely a single step of the feasibility pump. A computational study on optimization problems from the MIPLIB libraries demonstrates that granularity may be expected in various real world applications. Moreover, a comparison with Gurobi indicates that state of the art software does not always exploit granularity. Hence, our algorithms do not only possess a worst-case complexity advantage, but can also improve the CPU time needed to solve problems from practice.

Suggested Citation

  • Christoph Neumann & Oliver Stein & Nathan Sudermann-Merx, 2019. "A feasible rounding approach for mixed-integer optimization problems," Computational Optimization and Applications, Springer, vol. 72(2), pages 309-337, March.
  • Handle: RePEc:spr:coopap:v:72:y:2019:i:2:d:10.1007_s10589-018-0042-y
    DOI: 10.1007/s10589-018-0042-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0042-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0042-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frederick S. Hillier, 1969. "Efficient Heuristic Procedures for Integer Linear Programming with an Interior," Operations Research, INFORMS, vol. 17(4), pages 600-637, August.
    2. Pierre Bonami & João Gonçalves, 2012. "Heuristics for convex mixed integer nonlinear programs," Computational Optimization and Applications, Springer, vol. 51(2), pages 729-747, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charly Robinson La Rocca & Jean-François Cordeau & Emma Frejinger, 2024. "One-Shot Learning for MIPs with SOS1 Constraints," SN Operations Research Forum, Springer, vol. 5(3), pages 1-28, September.
    2. Christoph Neumann & Oliver Stein & Nathan Sudermann-Merx, 2020. "Granularity in Nonlinear Mixed-Integer Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 433-465, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonia Cafieri & Claudia D’Ambrosio, 2018. "Feasibility pump for aircraft deconfliction with speed regulation," Journal of Global Optimization, Springer, vol. 71(3), pages 501-515, July.
    2. Justin A. Sirignano & Gerry Tsoukalas & Kay Giesecke, 2016. "Large-Scale Loan Portfolio Selection," Operations Research, INFORMS, vol. 64(6), pages 1239-1255, December.
    3. Joseph, A. & Gass, S. I., 2002. "A framework for constructing general integer problems with well-determined duality gaps," European Journal of Operational Research, Elsevier, vol. 136(1), pages 81-94, January.
    4. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    5. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    6. M. Li & L. Vicente, 2013. "Inexact solution of NLP subproblems in MINLP," Journal of Global Optimization, Springer, vol. 55(4), pages 877-899, April.
    7. Sabah Bushaj & İ. Esra Büyüktahtakın, 2024. "A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack," Journal of Global Optimization, Springer, vol. 89(3), pages 655-685, July.
    8. Antonio Frangioni & Fabio Furini & Claudio Gentile, 2016. "Approximated perspective relaxations: a project and lift approach," Computational Optimization and Applications, Springer, vol. 63(3), pages 705-735, April.
    9. Joseph, Anito & Gass, Saul I. & Bryson, Noel, 1998. "An objective hyperplane search procedure for solving the general all-integer linear programming (ILP) problem," European Journal of Operational Research, Elsevier, vol. 104(3), pages 601-614, February.
    10. Kuo-Ling Huang & Sanjay Mehrotra, 2015. "An empirical evaluation of a walk-relax-round heuristic for mixed integer convex programs," Computational Optimization and Applications, Springer, vol. 60(3), pages 559-585, April.
    11. Timo Berthold, 2018. "A computational study of primal heuristics inside an MI(NL)P solver," Journal of Global Optimization, Springer, vol. 70(1), pages 189-206, January.
    12. Chunyi Wang & Fengzhang Luo & Zheng Jiao & Xiaolei Zhang & Zhipeng Lu & Yanshuo Wang & Ren Zhao & Yang Yang, 2022. "An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy," Energies, MDPI, vol. 15(23), pages 1-19, November.
    13. Robert M. Saltzman & Frederick S. Hillier, 1991. "An exact ceiling point algorithm for general integer linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 53-69, February.
    14. Christoph Neumann & Oliver Stein & Nathan Sudermann-Merx, 2020. "Granularity in Nonlinear Mixed-Integer Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 433-465, February.
    15. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    16. Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
    17. Timo Berthold & Andrea Lodi & Domenico Salvagnin, 2019. "Ten years of feasibility pump, and counting," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 1-14, March.
    18. Tsubakitani, Shigeru & Evans, James R., 1998. "An empirical study of a new metaheuristic for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 113-128, January.
    19. Saïd Hanafi & Raca Todosijević, 2017. "Mathematical programming based heuristics for the 0–1 MIP: a survey," Journal of Heuristics, Springer, vol. 23(4), pages 165-206, August.
    20. Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:2:d:10.1007_s10589-018-0042-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.