IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v136y2002i1p81-94.html
   My bibliography  Save this article

A framework for constructing general integer problems with well-determined duality gaps

Author

Listed:
  • Joseph, A.
  • Gass, S. I.

Abstract

No abstract is available for this item.

Suggested Citation

  • Joseph, A. & Gass, S. I., 2002. "A framework for constructing general integer problems with well-determined duality gaps," European Journal of Operational Research, Elsevier, vol. 136(1), pages 81-94, January.
  • Handle: RePEc:eee:ejores:v:136:y:2002:i:1:p:81-94
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(01)00035-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Saltzman & Frederick S. Hillier, 1992. "A Heuristic Ceiling Point Algorithm for General Integer Linear Programming," Management Science, INFORMS, vol. 38(2), pages 263-283, February.
    2. Joseph, Anito & Gass, Saul I. & Bryson, Noel, 1998. "An objective hyperplane search procedure for solving the general all-integer linear programming (ILP) problem," European Journal of Operational Research, Elsevier, vol. 104(3), pages 601-614, February.
    3. William Cook & Thomas Rutherford & Herbert E. Scarf & David Shallcross, 1993. "An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 5(2), pages 206-212, May.
    4. Robert M. Saltzman & Frederick S. Hillier, 1991. "An exact ceiling point algorithm for general integer linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 53-69, February.
    5. Frederick S. Hillier, 1969. "Efficient Heuristic Procedures for Integer Linear Programming with an Interior," Operations Research, INFORMS, vol. 17(4), pages 600-637, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph, Anito & Gass, Saul I. & Bryson, Noel, 1998. "An objective hyperplane search procedure for solving the general all-integer linear programming (ILP) problem," European Journal of Operational Research, Elsevier, vol. 104(3), pages 601-614, February.
    2. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2011. "A new class of functions for measuring solution integrality in the Feasibility Pump approach," DIS Technical Reports 2011-08, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    3. Elhedhli, Samir & Naoum-Sawaya, Joe, 2015. "Improved branching disjunctions for branch-and-bound: An analytic center approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 37-45.
    4. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2013. "A new class of functions for measuring solution integrality in the Feasibility Pump approach: Complete Results," DIAG Technical Reports 2013-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    5. Christoph Neumann & Oliver Stein & Nathan Sudermann-Merx, 2019. "A feasible rounding approach for mixed-integer optimization problems," Computational Optimization and Applications, Springer, vol. 72(2), pages 309-337, March.
    6. Karen Aardal & Cor A. J. Hurkens & Arjen K. Lenstra, 2000. "Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 427-442, August.
    7. Aardal, K. & van Hoesel, C.P.M., 1995. "Polyhedral techniques in combinatorial optimization," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    9. Gérard Cornuéjols & Milind Dawande, 1999. "A Class of Hard Small 0-1 Programs," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 205-210, May.
    10. Sabah Bushaj & İ. Esra Büyüktahtakın, 2024. "A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack," Journal of Global Optimization, Springer, vol. 89(3), pages 655-685, July.
    11. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2010. "Feasibility Pump-Like Heuristics for Mixed Integer Problems," DIS Technical Reports 2010-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    12. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Discussion Paper 1995-57, Tilburg University, Center for Economic Research.
    13. Aardal, K. & van Hoesel, C.P.M. & Lenstra, J.K. & Stougie, L., 1997. "A decade of combinatorial optimization," Research Memorandum 023, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    14. Thorsten Koch & Ted Ralphs & Yuji Shinano, 2012. "Could we use a million cores to solve an integer program?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(1), pages 67-93, August.
    15. Robert M. Saltzman & Frederick S. Hillier, 1991. "An exact ceiling point algorithm for general integer linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 53-69, February.
    16. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2010. "New concave penalty functions for improving the Feasibility Pump," DIS Technical Reports 2010-10, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    17. Karen Aardal & Arjen K. Lenstra, 2004. "Hard Equality Constrained Integer Knapsacks," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 724-738, August.
    18. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    19. Tsubakitani, Shigeru & Evans, James R., 1998. "An empirical study of a new metaheuristic for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 113-128, January.
    20. Saïd Hanafi & Raca Todosijević, 2017. "Mathematical programming based heuristics for the 0–1 MIP: a survey," Journal of Heuristics, Springer, vol. 23(4), pages 165-206, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:136:y:2002:i:1:p:81-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.