An objective hyperplane search procedure for solving the general all-integer linear programming (ILP) problem
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robert M. Saltzman & Frederick S. Hillier, 1992. "A Heuristic Ceiling Point Algorithm for General Integer Linear Programming," Management Science, INFORMS, vol. 38(2), pages 263-283, February.
- A. M. Geoffrion, 1969. "An Improved Implicit Enumeration Approach for Integer Programming," Operations Research, INFORMS, vol. 17(3), pages 437-454, June.
- Fred Glover, 1975. "Surrogate Constraint Duality in Mathematical Programming," Operations Research, INFORMS, vol. 23(3), pages 434-451, June.
- Fred Glover, 1965. "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem," Operations Research, INFORMS, vol. 13(6), pages 879-919, December.
- Frederick S. Hillier, 1969. "A Bound-and-Scan Algorithm for Pure Integer Linear Programming with General Variables," Operations Research, INFORMS, vol. 17(4), pages 638-679, August.
- Egon Balas, 1967. "Discrete Programming by the Filter Method," Operations Research, INFORMS, vol. 15(5), pages 915-957, October.
- S. Rajagopalan & Andreas C. Soteriou, 1994. "Capacity Acquisition and Disposal with Discrete Facility Sizes," Management Science, INFORMS, vol. 40(7), pages 903-917, July.
- Frederick S. Hillier, 1969. "Efficient Heuristic Procedures for Integer Linear Programming with an Interior," Operations Research, INFORMS, vol. 17(4), pages 600-637, August.
- Robert M. Saltzman & Frederick S. Hillier, 1991. "An exact ceiling point algorithm for general integer linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 53-69, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Joseph, A. & Gass, S. I., 2002. "A framework for constructing general integer problems with well-determined duality gaps," European Journal of Operational Research, Elsevier, vol. 136(1), pages 81-94, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joseph, A. & Gass, S. I., 2002. "A framework for constructing general integer problems with well-determined duality gaps," European Journal of Operational Research, Elsevier, vol. 136(1), pages 81-94, January.
- Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
- Mohammadi Bidhandi, Hadi & Mohd. Yusuff, Rosnah & Megat Ahmad, Megat Mohamad Hamdan & Abu Bakar, Mohd Rizam, 2009. "Development of a new approach for deterministic supply chain network design," European Journal of Operational Research, Elsevier, vol. 198(1), pages 121-128, October.
- van Dam, Wim & Telgen, Jan, 1978. "Some Computational Experiments With A Primal-Dual Surrogate Simplex Algorithm," Econometric Institute Archives 272174, Erasmus University Rotterdam.
- Jiang, Bo & Tzavellas, Hector, 2023. "Optimal liquidity allocation in an equity network," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 286-294.
- Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.
- Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
- Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
- Saïd Hanafi & Christophe Wilbaut, 2011. "Improved convergent heuristics for the 0-1 multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 183(1), pages 125-142, March.
- Hasan Pirkul, 1987. "A heuristic solution procedure for the multiconstraint zero‐one knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(2), pages 161-172, April.
- Ablanedo-Rosas, José H. & Rego, César, 2010. "Surrogate constraint normalization for the set covering problem," European Journal of Operational Research, Elsevier, vol. 205(3), pages 540-551, September.
- Sanjiv Sarin & Mark H. Karwan & Ronald L. Rardin, 1987. "A new surrogate dual multiplier search procedure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 431-450, June.
- Glover, Fred, 2013. "Advanced greedy algorithms and surrogate constraint methods for linear and quadratic knapsack and covering problems," European Journal of Operational Research, Elsevier, vol. 230(2), pages 212-225.
- Balev, Stefan & Yanev, Nicola & Freville, Arnaud & Andonov, Rumen, 2008. "A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 63-76, April.
- Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2011. "A new class of functions for measuring solution integrality in the Feasibility Pump approach," DIS Technical Reports 2011-08, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
- Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
- Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
- Bricha, Naji & Nourelfath, Mustapha, 2014. "Extra-capacity versus protection for supply networks under attack," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 185-196.
- Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:104:y:1998:i:3:p:601-614. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.