IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i6p617-d517128.html
   My bibliography  Save this article

Axiomatic Results for Weighted Allocation Rules under Multiattribute Situations

Author

Listed:
  • Yu-Hsien Liao

    (Department of Applied Mathematics, National Pingtung University, Pingtung County 900391, Taiwan)

Abstract

In many interactive environments, operators may have to deal with different work objectives at the same time. In a realistic context, such as differences in the target type to be addressed, or changes in the behavior of other operators, operators may therefore have to cope with by adopting different work levels (strategies) at any given time. On the other hand, the importance or influence brought by operators may vary depending on many subjective and objective factors, such as the size of the constituency represented by a congressman, and the bargaining power of a business personnel which may vary. Therefore, it is reasonable that weights are apportioned to operators and arbitrary usability should be distributed according to these weights under various working levels and multiattribute situations. In pre-existing results for allocation rules, weights might be always apportioned to the “operators” or the “levels” to modify the differences among the operators or its working levels respectively. By applying weights to the operators and its working levels (strategies) simultaneously, we adopt the maximal marginal variations among working level (strategy) vectors to propose an allocation rule under multiattribute situations. Furthermore, we introduce some axiomatic outcomes to display the rationality for this weighted allocation rule. By replacing weights to be maximal marginal variations, a generalized index is also introduced.

Suggested Citation

  • Yu-Hsien Liao, 2021. "Axiomatic Results for Weighted Allocation Rules under Multiattribute Situations," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:617-:d:517128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/6/617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/6/617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:ebl:ecbull:v:3:y:2008:i:70:p:1-8 is not listed on IDEAS
    2. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.
    3. Yan-An Hwang & Yu-Hsien Liao, 2010. "The unit-level-core for multi-choice games: the replicated core for TU games," Journal of Global Optimization, Springer, vol. 47(2), pages 161-171, June.
    4. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    5. Yu-Hsien Liao, 2008. "The Maximal Equal Allocation of Nonseparable Costs on Multi-Choice Games," Economics Bulletin, AccessEcon, vol. 3(70), pages 1-8.
    6. Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
    7. Maria Rosaria Guarini & Fabrizio Battisti & Anthea Chiovitti, 2018. "A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes," Sustainability, MDPI, vol. 10(2), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Hsien Liao, 2022. "A Weighted Solution Concept under Replicated Behavior," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    2. Yu-Hsien Liao, 2023. "Power Indices under Specific Multicriteria Status," Games, MDPI, vol. 14(4), pages 1-10, June.
    3. Hsiao, Chih-Ru, 2011. "A Review on Liao’s Dissertation Entitled “The Solutions on Multi-choice Games” and Related Publications," MPRA Paper 30260, University Library of Munich, Germany.
    4. R. Branzei & N. Llorca & J. Sánchez-Soriano & S. Tijs, 2014. "A constrained egalitarian solution for convex multi-choice games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 860-874, October.
    5. Yan-An Hwang & Yu-Hsien Liao, 2022. "The Replicated Core under Multi-Choice Non-Transferable- Utility Situations: Converse Reduction Axiomatic Enlargements," Mathematics, MDPI, vol. 10(5), pages 1-8, March.
    6. Yu-hsien Liao & Ling-Yun Chung & Po-hang Wu, 2015. "The EANSC: a weighted extension and axiomatization," Economics Bulletin, AccessEcon, vol. 35(1), pages 475-480.
    7. Yu-Hsien Liao, 2024. "Fuzzy Assessment Mechanisms under Multi-Objective Considerations," Mathematics, MDPI, vol. 12(19), pages 1-15, September.
    8. Yu-Hsien Liao, 2009. "Dividend approach and level consistency for the Derks and Peters value," Economics Bulletin, AccessEcon, vol. 29(2), pages 1054-1062.
    9. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
    10. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    11. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    12. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    13. J. Puerto & F. Fernández & Y. Hinojosa, 2008. "Partially ordered cooperative games: extended core and Shapley value," Annals of Operations Research, Springer, vol. 158(1), pages 143-159, February.
    14. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    15. Alexandre Skoda & Xavier Venel, 2022. "Weighted Average-convexity and Cooperative Games," Documents de travail du Centre d'Economie de la Sorbonne 22016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Nir Dagan, 1995. "Consistent Solutions in Exchange Economies: a Characterization of the Price Mechanism," Economic theory and game theory 011, Nir Dagan.
    17. Walter Beckert, 2018. "An Empirical Analysis of Countervailing Power in Business-to-Business Bargaining," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(3), pages 369-402, May.
    18. Peleg, Bezalel & Tijs, Stef, 1996. "The Consistency Principle for Games in Strategic Forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 13-34.
    19. Dutta, Bhaskar & Ehlers, Lars & Kar, Anirban, 2010. "Externalities, potential, value and consistency," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2380-2411, November.
    20. Casajus, André & Huettner, Frank, 2015. "Potential, value, and the multilinear extension," Economics Letters, Elsevier, vol. 135(C), pages 28-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:617-:d:517128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.