IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v74y2019i3d10.1007_s10589-019-00119-4.html
   My bibliography  Save this article

Two new integer linear programming formulations for the vertex bisection problem

Author

Listed:
  • Norberto Castillo-García

    (Tecnológico Nacional de México/I.T. Altamira)

  • Paula Hernández Hernández

    (Tecnológico Nacional de México/I.T. Altamira)

Abstract

The vertex bisection problem (VBP) is an NP-hard combinatorial optimization problem with important practical applications in the context of network communications. The problem consists in finding a partition of the set of vertices of a generic undirected graph into two subsets (A and B) of approximately the same cardinality in such a way that the number of vertices in A with at least one adjacent vertex in B is minimized. In this article, we propose two new integer linear programming (ILP) formulations for VBP. Our first formulation (ILPVBP) is based on the redefinition of the objective function of VBP. The redefinition consists in computing the objective value from the vertices in B rather than from the vertices in A. As far as we are aware, this is the first time that this representation is used to solve VBP. The second formulation (MILP) reformulates ILPVBP in such a way that the number of variables and constraints is reduced. In order to assess the performance of our formulations, we conducted a computational experiment and compare the results with the best ILP formulation available in the literature (ILPLIT). The experimental results clearly indicate that our formulations outperform ILPLIT in (i) average objective value, (ii) average computing time and (iii) number of optimal solutions found. We statistically validate the results of the experiment through the well-known Wilcoxon rank sum test for a confidence level of 99.9%. Additionally, we provide 404 new optimal solutions and 73 new upper and lower bounds for 477 instances from 13 different groups of graphs.

Suggested Citation

  • Norberto Castillo-García & Paula Hernández Hernández, 2019. "Two new integer linear programming formulations for the vertex bisection problem," Computational Optimization and Applications, Springer, vol. 74(3), pages 895-918, December.
  • Handle: RePEc:spr:coopap:v:74:y:2019:i:3:d:10.1007_s10589-019-00119-4
    DOI: 10.1007/s10589-019-00119-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00119-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00119-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Hager & James T. Hungerford & Ilya Safro, 2018. "A multilevel bilinear programming algorithm for the vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 189-223, January.
    2. Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinxin Li & Ting Kei Pong & Hao Sun & Henry Wolkowicz, 2021. "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 853-891, April.
    2. Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
    3. Olga Kuryatnikova & Renata Sotirov & Juan C. Vera, 2022. "The Maximum k -Colorable Subgraph Problem and Related Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 656-669, January.
    4. Kuryatnikova, Olga & Sotirov, Renata & Vera, J.C., 2022. "The maximum $k$-colorable subgraph problem and related problems," Other publications TiSEM 40e477c0-a78e-4ee1-92de-8, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:74:y:2019:i:3:d:10.1007_s10589-019-00119-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.