IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v55y2013i3p571-596.html
   My bibliography  Save this article

Parallel distributed-memory simplex for large-scale stochastic LP problems

Author

Listed:
  • Miles Lubin
  • J. Hall
  • Cosmin Petra
  • Mihai Anitescu

Abstract

We present a parallelization of the revised simplex method for large extensive forms of two-stage stochastic linear programming (LP) problems. These problems have been considered too large to solve with the simplex method; instead, decomposition approaches based on Benders decomposition or, more recently, interior-point methods are generally used. However, these approaches do not provide optimal basic solutions, which allow for efficient hot-starts (e.g., in a branch-and-bound context) and can provide important sensitivity information. Our approach exploits the dual block-angular structure of these problems inside the linear algebra of the revised simplex method in a manner suitable for high-performance distributed-memory clusters or supercomputers. While this paper focuses on stochastic LPs, the work is applicable to all problems with a dual block-angular structure. Our implementation is competitive in serial with highly efficient sparsity-exploiting simplex codes and achieves significant relative speed-ups when run in parallel. Additionally, very large problems with hundreds of millions of variables have been successfully solved to optimality. This is the largest-scale parallel sparsity-exploiting revised simplex implementation that has been developed to date and the first truly distributed solver. It is built on novel analysis of the linear algebra for dual block-angular LP problems when solved by using the revised simplex method and a novel parallel scheme for applying product-form updates. Copyright Springer Science+Business Media New York (outside the USA) 2013

Suggested Citation

  • Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.
  • Handle: RePEc:spr:coopap:v:55:y:2013:i:3:p:571-596
    DOI: 10.1007/s10589-013-9542-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9542-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9542-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    2. H. Vladimirou & S.A. Zenios, 1999. "Scalable parallel computations forlarge-scale stochastic programming," Annals of Operations Research, Springer, vol. 90(0), pages 87-129, January.
    3. Harry M. Markowitz, 1957. "The Elimination form of the Inverse and its Application to Linear Programming," Management Science, INFORMS, vol. 3(3), pages 255-269, April.
    4. John M. Bennett, 1966. "An Approach to Some Structured Linear Programming Problems," Operations Research, INFORMS, vol. 14(4), pages 636-645, August.
    5. Uwe H. Suhl & Leena M. Suhl, 1990. "Computing Sparse LU Factorizations for Large-Scale Linear Programming Bases," INFORMS Journal on Computing, INFORMS, vol. 2(4), pages 325-335, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
    2. Martin Biel & Mikael Johansson, 2022. "Efficient Stochastic Programming in Julia," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1885-1902, July.
    3. ARAVENA, Ignacio & PAPAVASILIOU, Anthony, 2016. "An Asynchronous Distributed Algorithm for solving Stochastic Unit Commitment," LIDAM Discussion Papers CORE 2016038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Qi Huangfu & J. Hall, 2015. "Novel update techniques for the revised simplex method," Computational Optimization and Applications, Springer, vol. 60(3), pages 587-608, April.
    5. Lluís-Miquel Munguía & Geoffrey Oxberry & Deepak Rajan & Yuji Shinano, 2019. "Parallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programs," Computational Optimization and Applications, Springer, vol. 73(2), pages 575-601, June.
    6. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.
    7. Sven Leyffer & Charlie Vanaret, 2020. "An augmented Lagrangian filter method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 343-376, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    2. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2017. "A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 612-630, November.
    3. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2020. "Optimization techniques for tree-structured nonlinear problems," Computational Management Science, Springer, vol. 17(3), pages 409-436, October.
    4. Harry M. Markowitz, 2004. "Trains of Thought," Chapters, in: Michael Szenberg & Lall Ramrattan (ed.), Reflections of Eminent Economists, chapter 17, Edward Elgar Publishing.
    5. LOUTE, Etienne, 2003. "Gaussian elimination as a computational paradigm," LIDAM Discussion Papers CORE 2003059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Paparrizos, Konstantinos & Samaras, Nikolaos & Stephanides, George, 2003. "An efficient simplex type algorithm for sparse and dense linear programs," European Journal of Operational Research, Elsevier, vol. 148(2), pages 323-334, July.
    7. Qi Huangfu & J. Hall, 2015. "Novel update techniques for the revised simplex method," Computational Optimization and Applications, Springer, vol. 60(3), pages 587-608, April.
    8. Defeng Liu & Andrea Lodi & Mathieu Tanneau, 2021. "Learning chordal extensions," Journal of Global Optimization, Springer, vol. 81(1), pages 3-22, September.
    9. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    10. Harry M. Markowitz, 2002. "Efficient Portfolios, Sparse Matrices, and Entities: A Retrospective," Operations Research, INFORMS, vol. 50(1), pages 154-160, February.
    11. Gass, Saul I., 1997. "The Washington operations research connection: the rest of the story," Socio-Economic Planning Sciences, Elsevier, vol. 31(4), pages 245-255, December.
    12. Suresh P. Sethi & Sushil Gupta & Vipin K. Agrawal & Vijay K. Agrawal, 2022. "Nobel laureates’ contributions to and impacts on operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4283-4303, December.
    13. Unai Aldasoro & Laureano Escudero & María Merino & Juan Monge & Gloria Pérez, 2015. "On parallelization of a stochastic dynamic programming algorithm for solving large-scale mixed 0–1 problems under uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 703-742, October.
    14. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    15. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    16. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.
    17. Tonbari, Mohamed El & Ahmed, Shabbir, 2023. "Consensus-based Dantzig-Wolfe decomposition," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1441-1456.
    18. Ricardo Fukasawa & Laurent Poirrier, 2019. "Permutations in the Factorization of Simplex Bases," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 612-632, July.
    19. Daniel E. Steffy & Kati Wolter, 2013. "Valid Linear Programming Bounds for Exact Mixed-Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 271-284, May.
    20. Keeping, B.R. & Pantelides, C.C., 1998. "A distributed memory parallel algorithm for the efficient computation of sensitivities of differential-algebraic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(6), pages 545-558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:55:y:2013:i:3:p:571-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.