IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v60y2015i3p587-608.html
   My bibliography  Save this article

Novel update techniques for the revised simplex method

Author

Listed:
  • Qi Huangfu
  • J. Hall

Abstract

This paper introduces three novel techniques for updating the invertible representation of the basis matrix when solving practical sparse linear programming problems using a high performance implementation of the dual revised simplex method, being of particular value when suboptimization is used. Two are variants of the product form update and the other permits multiple Forrest–Tomlin updates to be performed. Computational results show that one of the product form variants is significantly more efficient than the traditional approach, with its performance approaching that of the Forrest–Tomlin update for some problems. The other is less efficient, but valuable in the context of the dual revised simplex method with suboptimization. Results show that the multiple Forrest–Tomlin updates are performed with no loss of serial efficiency. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Qi Huangfu & J. Hall, 2015. "Novel update techniques for the revised simplex method," Computational Optimization and Applications, Springer, vol. 60(3), pages 587-608, April.
  • Handle: RePEc:spr:coopap:v:60:y:2015:i:3:p:587-608
    DOI: 10.1007/s10589-014-9689-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9689-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9689-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.
    2. Uwe H. Suhl & Leena M. Suhl, 1990. "Computing Sparse LU Factorizations for Large-Scale Linear Programming Bases," INFORMS Journal on Computing, INFORMS, vol. 2(4), pages 325-335, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    2. Paparrizos, Konstantinos & Samaras, Nikolaos & Stephanides, George, 2003. "An efficient simplex type algorithm for sparse and dense linear programs," European Journal of Operational Research, Elsevier, vol. 148(2), pages 323-334, July.
    3. Lluís-Miquel Munguía & Geoffrey Oxberry & Deepak Rajan & Yuji Shinano, 2019. "Parallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programs," Computational Optimization and Applications, Springer, vol. 73(2), pages 575-601, June.
    4. Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.
    5. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    6. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.
    7. Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
    8. Ricardo Fukasawa & Laurent Poirrier, 2019. "Permutations in the Factorization of Simplex Bases," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 612-632, July.
    9. Daniel E. Steffy & Kati Wolter, 2013. "Valid Linear Programming Bounds for Exact Mixed-Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 271-284, May.
    10. ARAVENA, Ignacio & PAPAVASILIOU, Anthony, 2016. "An Asynchronous Distributed Algorithm for solving Stochastic Unit Commitment," LIDAM Discussion Papers CORE 2016038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    12. A. Swietanowski, 1995. "A Penalty Based Simplex Method for Linear Programming," Working Papers wp95005, International Institute for Applied Systems Analysis.
    13. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    14. J. Hall, 2010. "Towards a practical parallelisation of the simplex method," Computational Management Science, Springer, vol. 7(2), pages 139-170, April.
    15. Robert Ashford, 2007. "Mixed integer programming: A historical perspective with Xpress-MP," Annals of Operations Research, Springer, vol. 149(1), pages 5-17, February.
    16. Martin Biel & Mikael Johansson, 2022. "Efficient Stochastic Programming in Julia," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1885-1902, July.
    17. Erling D. Andersen, 1999. "On Exploiting Problem Structure in a Basis Identification Procedure for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 95-103, February.
    18. Sven Leyffer & Charlie Vanaret, 2020. "An augmented Lagrangian filter method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 343-376, October.
    19. István Maros & Gautam Mitra, 1998. "Strategies for Creating Advanced Bases for Large-Scale Linear Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 248-260, May.
    20. Robert E. Bixby, 2002. "Solving Real-World Linear Programs: A Decade and More of Progress," Operations Research, INFORMS, vol. 50(1), pages 3-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:3:p:587-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.