IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v96y1998i2d10.1023_a1022670114963.html
   My bibliography  Save this article

On Some Properties of Generalized Proximal Point Methods for Variational Inequalities

Author

Listed:
  • A. N. Iusem

    (Researcher, Institute de Matemática Pura e Aplicada)

Abstract

We discuss here generalized proximal point methods applied to variational inequality problems. These methods differ from the classical point method in that a so-called Bregman distance substitutes for the Euclidean distance and forces the sequence generated by the algorithm to remain in the interior of the feasible region, assumed to be nonempty. We consider here the case in which this region is a polyhedron (which includes linear and nonlinear programming, monotone linear complementarity problems, and also certain nonlinear complementarity problems), and present two alternatives to deal with linear equality constraints. We prove that the sequences generated by any of these alternatives, which in general are different, converge to the same point, namely the solution of the problem which is closest, in the sense of the Bregman distance, to the initial iterate, for a certain class of operators. This class consists essentially of point-to-point and differentiable operators such that their Jacobian matrices are positive semidefinite (not necessarily symmetric) and their kernels are constant in the feasible region and invariant through symmetrization. For these operators, the solution set of the problem is also a polyhedron. Thus, we extend a previous similar result which covered only linear operators with symmetric and positive-semidefinite matrices.

Suggested Citation

  • A. N. Iusem, 1998. "On Some Properties of Generalized Proximal Point Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 337-362, February.
  • Handle: RePEc:spr:joptap:v:96:y:1998:i:2:d:10.1023_a:1022670114963
    DOI: 10.1023/A:1022670114963
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022670114963
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022670114963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfredo N. Iusem & B. F. Svaiter & Marc Teboulle, 1994. "Entropy-Like Proximal Methods in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 790-814, November.
    2. Alfredo N. Iusem & Marc Teboulle, 1995. "Convergence Rate Analysis of Nonquadratic Proximal Methods for Convex and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 20(3), pages 657-677, August.
    3. Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
    2. N.H. Xiu & J.Z. Zhang, 2002. "Local Convergence Analysis of Projection-Type Algorithms: Unified Approach," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 211-230, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    2. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    3. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    4. Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.
    5. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    6. Jein-Shan Chen & Shaohua Pan, 2010. "An entropy-like proximal algorithm and the exponential multiplier method for convex symmetric cone programming," Computational Optimization and Applications, Springer, vol. 47(3), pages 477-499, November.
    7. K. Kiwiel, 1995. "Proximal Minimization Methods with Generalized Bregman Functions," Working Papers wp95024, International Institute for Applied Systems Analysis.
    8. G. Bento & J. Cruz Neto & J. Lopes & A. Soares Jr & Antoine Soubeyran, 2016. "Generalized Proximal Distances for Bilevel Equilibrium Problems," Post-Print hal-01690192, HAL.
    9. Teemu Pennanen, 2002. "Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 170-191, February.
    10. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    11. J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
    12. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2021. "A Projected Forward-Backward Algorithm for Constrained Minimization with Applications to Image Inpainting," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    13. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    14. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    15. Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
    16. R. Jiménez & J. E. Yukich, 2002. "Asymptotics for Statistical Distances Based on Voronoi Tessellations," Journal of Theoretical Probability, Springer, vol. 15(2), pages 503-541, April.
    17. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    18. J. Y. Bello Cruz & R. Díaz Millán, 2014. "A Direct Splitting Method for Nonsmooth Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 728-737, June.
    19. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    20. Bonettini, Silvia & Prato, Marco & Rebegoldi, Simone, 2016. "A cyclic block coordinate descent method with generalized gradient projections," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 288-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:96:y:1998:i:2:d:10.1023_a:1022670114963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.