IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v67y2017i2d10.1007_s10589-017-9894-9.html
   My bibliography  Save this article

An SQP method for mathematical programs with vanishing constraints with strong convergence properties

Author

Listed:
  • Matúš Benko

    (Johannes Kepler University Linz)

  • Helmut Gfrerer

    (Johannes Kepler University Linz)

Abstract

We propose an SQP algorithm for mathematical programs with vanishing constraints which solves at each iteration a quadratic program with linear vanishing constraints. The algorithm is based on the newly developed concept of $${\mathcal {Q}}$$ Q -stationarity (Benko and Gfrerer in Optimization 66(1):61–92, 2017). We demonstrate how $${\mathcal {Q}}_M$$ Q M -stationary solutions of the quadratic program can be obtained. We show that all limit points of the sequence of iterates generated by the basic SQP method are at least M-stationary and by some extension of the method we also guarantee the stronger property of $${\mathcal {Q}}_M$$ Q M -stationarity of the limit points.

Suggested Citation

  • Matúš Benko & Helmut Gfrerer, 2017. "An SQP method for mathematical programs with vanishing constraints with strong convergence properties," Computational Optimization and Applications, Springer, vol. 67(2), pages 361-399, June.
  • Handle: RePEc:spr:coopap:v:67:y:2017:i:2:d:10.1007_s10589-017-9894-9
    DOI: 10.1007/s10589-017-9894-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9894-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9894-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfgang Achtziger & Tim Hoheisel & Christian Kanzow, 2013. "A smoothing-regularization approach to mathematical programs with vanishing constraints," Computational Optimization and Applications, Springer, vol. 55(3), pages 733-767, July.
    2. A. F. Izmailov & M. V. Solodov, 2009. "Mathematical Programs with Vanishing Constraints: Optimality Conditions, Sensitivity, and a Relaxation Method," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 501-532, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingjie Hu & Jiguang Wang & Yu Chen, 2020. "New dualities for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 287(1), pages 233-255, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Antczak, 2023. "On directionally differentiable multiobjective programming problems with vanishing constraints," Annals of Operations Research, Springer, vol. 328(2), pages 1181-1212, September.
    2. Qingjie Hu & Jiguang Wang & Yu Chen, 2020. "New dualities for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 287(1), pages 233-255, April.
    3. Sajjad Kazemi & Nader Kanzi, 2018. "Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 800-819, December.
    4. Tadeusz Antczak, 2022. "Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints," 4OR, Springer, vol. 20(3), pages 417-442, September.
    5. Wolfgang Achtziger & Tim Hoheisel & Christian Kanzow, 2013. "A smoothing-regularization approach to mathematical programs with vanishing constraints," Computational Optimization and Applications, Springer, vol. 55(3), pages 733-767, July.
    6. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    7. A. Izmailov & A. Pogosyan, 2012. "Active-set Newton methods for mathematical programs with vanishing constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 425-452, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:67:y:2017:i:2:d:10.1007_s10589-017-9894-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.