Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-014-9658-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- A. Izmailov & A. Pogosyan & M. Solodov, 2012. "Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 51(1), pages 199-221, January.
- A. Izmailov & A. Kurennoy, 2014. "On regularity conditions for complementarity problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 667-684, April.
- A. Izmailov & M. Solodov, 2009. "Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints," Computational Optimization and Applications, Springer, vol. 42(2), pages 231-264, March.
- A. F. Izmailov & M. V. Solodov, 2002. "The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and its Applications to Optimality Conditions," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 614-635, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- A. F. Izmailov & M. V. Solodov, 2022. "Perturbed Augmented Lagrangian Method Framework with Applications to Proximal and Smoothed Variants," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 491-522, June.
- Nguyen T. V. Hang & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2022. "Augmented Lagrangian method for second-order cone programs under second-order sufficiency," Journal of Global Optimization, Springer, vol. 82(1), pages 51-81, January.
- Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
- Matúš Benko & Patrick Mehlitz, 2024. "Isolated Calmness of Perturbation Mappings and Superlinear Convergence of Newton-Type Methods," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1587-1621, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- A. Izmailov & M. Solodov & E. Uskov, 2015. "Combining stabilized SQP with the augmented Lagrangian algorithm," Computational Optimization and Applications, Springer, vol. 62(2), pages 405-429, November.
- Aram V. Arutyunov & Alexey F. Izmailov, 2005. "Sensitivity Analysis for Cone-Constrained Optimization Problems Under the Relaxed Constraint Qualifications," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 333-353, May.
- A. Izmailov & M. Solodov, 2009. "Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints," Computational Optimization and Applications, Springer, vol. 42(2), pages 231-264, March.
- A. F. Izmailov & M. V. Solodov, 2024. "On Local Behavior of Newton-Type Methods Near Critical Solutions of Constrained Equations," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1103-1126, November.
- Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
- Andreas Fischer & Alexey F. Izmailov & Mario Jelitte, 2023. "Stability of Singular Solutions of Nonlinear Equations with Restricted Smoothness Assumptions," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 1008-1035, March.
- A. Izmailov & A. Pogosyan, 2012. "Active-set Newton methods for mathematical programs with vanishing constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 425-452, October.
- Aram V. Arutyunov & Sergey E. Zhukovskiy, 2023. "Smoothing Procedure for Lipschitzian Equations and Continuity of Solutions," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 112-142, October.
- Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
More about this item
Keywords
Variational problem; Karush–Kuhn–Tucker system; Augmented Lagrangian; Method of multipliers; Noncritical Lagrange multiplier; Superlinear convergence; Generalized Jacobian;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:111-140. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.