IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v64y2006i2p285-308.html
   My bibliography  Save this article

Minisum location problem with farthest Euclidean distances

Author

Listed:
  • Jian-lin Jiang
  • Ya Xu

Abstract

The paper formulates an extended model of Weber problem in which the customers are represented by convex demand regions. The objective is to generate a site in R 2 that minimizes the sum of weighted Euclidean distances between the new facility and the farthest points of demand regions. This location problem is decomposed into a polynomial number of subproblems: constrained Weber problems (CWPs). A projection contraction method is suggested to solve these CWPs. An algorithm and the complexity analysis are presented. Three techniques of bound test, greedy choice and choice of starting point are adopted to reduce the computational time. The restricted case of the facility is also considered. Preliminary computational results are reported, which shows that with the above three techniques adopted the algorithm is efficient. Copyright Springer-Verlag 2006

Suggested Citation

  • Jian-lin Jiang & Ya Xu, 2006. "Minisum location problem with farthest Euclidean distances," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 285-308, October.
  • Handle: RePEc:spr:mathme:v:64:y:2006:i:2:p:285-308
    DOI: 10.1007/s00186-006-0084-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-006-0084-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-006-0084-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Hansen & D. Peeters & J.-F. Thisse, 1982. "An Algorithm for a Constrained Weber Problem," Management Science, INFORMS, vol. 28(11), pages 1285-1295, November.
    2. Arthur P. Hurter, Jr. & Margaret K. Schaefer & Richard E. Wendell, 1975. "Solutions of Constrained Location Problems," Management Science, INFORMS, vol. 22(1), pages 51-56, September.
    3. Stefan Nickel & Justo Puerto & Antonio M. Rodriguez-Chia, 2003. "An Approach to Location Models Involving Sets as Existing Facilities," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 693-715, November.
    4. Carrizosa, E. & Munoz-Marquez, M. & Puerto, J., 1998. "The Weber problem with regional demand," European Journal of Operational Research, Elsevier, vol. 104(2), pages 358-365, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianlin Jiang & Xiaoming Yuan, 2012. "A Barzilai-Borwein-based heuristic algorithm for locating multiple facilities with regional demand," Computational Optimization and Applications, Springer, vol. 51(3), pages 1275-1295, April.
    2. Nazlı Dolu & Umur Hastürk & Mustafa Kemal Tural, 2020. "Solution methods for a min–max facility location problem with regional customers considering closest Euclidean distances," Computational Optimization and Applications, Springer, vol. 75(2), pages 537-560, March.
    3. Shaw, Lipika & Das, Soumen Kumar & Roy, Sankar Kumar, 2022. "Location-allocation problem for resource distribution under uncertainty in disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianlin Jiang & Xiaoming Yuan, 2012. "A Barzilai-Borwein-based heuristic algorithm for locating multiple facilities with regional demand," Computational Optimization and Applications, Springer, vol. 51(3), pages 1275-1295, April.
    2. C. Valero Franco & A. Rodríguez-Chía & I. Espejo Miranda, 2008. "The single facility location problem with average-distances," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 164-194, July.
    3. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    4. Diaz-Banez, J.M. & Ramos, P.A. & Sabariego, P., 2007. "The maximin line problem with regional demand," European Journal of Operational Research, Elsevier, vol. 181(1), pages 20-29, August.
    5. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    6. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    7. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    8. H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.
    9. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    10. André Berger & Alexander Grigoriev & Andrej Winokurow, 2017. "An efficient algorithm for the single facility location problem with polyhedral norms and disk-shaped demand regions," Computational Optimization and Applications, Springer, vol. 68(3), pages 661-669, December.
    11. Lina Mallozzi & Justo Puerto & Moisés Rodríguez-Madrena, 2019. "On Location-Allocation Problems for Dimensional Facilities," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 730-767, August.
    12. Blanco, Víctor & Fernández, Elena & Puerto, Justo, 2017. "Minimum Spanning Trees with neighborhoods: Mathematical programming formulations and solution methods," European Journal of Operational Research, Elsevier, vol. 262(3), pages 863-878.
    13. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    14. Jing Yao & Alan T. Murray, 2014. "Serving regional demand in facility location," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 643-662, August.
    15. Francisco André & Francisco Velasco & Luis Gonzalez-Abril, 2009. "Intertemporal and spatial location of disposal facilities," Spanish Economic Review, Springer;Spanish Economic Association, vol. 11(1), pages 23-49, March.
    16. Sándor P. Fekete & Joseph S. B. Mitchell & Karin Beurer, 2005. "On the Continuous Fermat-Weber Problem," Operations Research, INFORMS, vol. 53(1), pages 61-76, February.
    17. Richard Francis & Timothy Lowe, 2014. "Comparative error bound theory for three location models: continuous demand versus discrete demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 144-169, April.
    18. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    19. Drezner, Zvi & Scott, Carlton H., 1999. "On the feasible set for the squared Euclidean Weber problem and applications," European Journal of Operational Research, Elsevier, vol. 118(3), pages 620-630, November.
    20. Frank Plastria, 2009. "Asymmetric distances, semidirected networks and majority in Fermat–Weber problems," Annals of Operations Research, Springer, vol. 167(1), pages 121-155, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:64:y:2006:i:2:p:285-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.