IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v206y2010i1p11-17.html
   My bibliography  Save this article

The inverse Fermat-Weber problem

Author

Listed:
  • Burkard, Rainer E.
  • Galavii, Mohammadreza
  • Gassner, Elisabeth

Abstract

Given n points in the plane with nonnegative weights, the inverse Fermat-Weber problem consists in changing the weights at minimum cost such that a prespecified point in the plane becomes the Euclidean 1-median. The cost is proportional to the increase or decrease of the corresponding weight. In case that the prespecified point does not coincide with one of the given n points, the inverse Fermat-Weber problem can be formulated as linear program. We derive a purely combinatorial algorithm which solves the inverse Fermat-Weber problem with unit cost using O(n) greedy-like iterations where each of them can be done in constant time if the points are sorted according to their slopes. If the prespecified point coincides with one of the given n points, it is shown that the corresponding inverse problem can be written as convex problem and hence is solvable in polynomial time to any fixed precision.

Suggested Citation

  • Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:11-17
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00105-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence M. Ostresh, 1978. "On the Convergence of a Class of Iterative Methods for Solving the Weber Location Problem," Operations Research, INFORMS, vol. 26(4), pages 597-609, August.
    2. Zhang, Jianzhong & Liu, Zhenhong & Ma, Zhongfan, 2000. "Some reverse location problems," European Journal of Operational Research, Elsevier, vol. 124(1), pages 77-88, July.
    3. Elisabeth Gassner, 2008. "The inverse 1-maxian problem with edge length modification," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 50-67, July.
    4. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kien Trung Nguyen & Nguyen Thanh Hung, 2020. "The inverse connected p-median problem on block graphs under various cost functions," Annals of Operations Research, Springer, vol. 292(1), pages 97-112, September.
    2. Behrooz Alizadeh & Rainer Burkard, 2013. "A linear time algorithm for inverse obnoxious center location problems on networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 585-594, September.
    3. Franco Rubio-López & Obidio Rubio & Rolando Urtecho Vidaurre, 2023. "The Inverse Weber Problem on the Plane and the Sphere," Mathematics, MDPI, vol. 11(24), pages 1-23, December.
    4. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    5. Kien Nguyen & Lam Anh, 2015. "Inverse $$k$$ k -centrum problem on trees with variable vertex weights," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 19-30, August.
    6. Nguyen, Kien Trung & Chassein, André, 2015. "The inverse convex ordered 1-median problem on trees under Chebyshev norm and Hamming distance," European Journal of Operational Research, Elsevier, vol. 247(3), pages 774-781.
    7. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    8. Behrooz Alizadeh & Esmaeil Afrashteh & Fahimeh Baroughi, 2018. "Combinatorial Algorithms for Some Variants of Inverse Obnoxious Median Location Problem on Tree Networks," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 914-934, September.
    9. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
    10. Xiucui Guan & Binwu Zhang, 2012. "Inverse 1-median problem on trees under weighted Hamming distance," Journal of Global Optimization, Springer, vol. 54(1), pages 75-82, September.
    11. Fahimeh Baroughi Bonab & Rainer Burkard & Elisabeth Gassner, 2011. "Inverse p-median problems with variable edge lengths," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 263-280, April.
    12. Alizadeh, Behrooz & Afrashteh, Esmaeil, 2020. "Budget-constrained inverse median facility location problem on tree networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    13. Xinqiang Qian & Xiucui Guan & Junhua Jia & Qiao Zhang & Panos M. Pardalos, 2023. "Vertex quickest 1-center location problem on trees and its inverse problem under weighted $$l_\infty $$ l ∞ norm," Journal of Global Optimization, Springer, vol. 85(2), pages 461-485, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    2. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    3. Elisabeth Gassner, 2008. "The inverse 1-maxian problem with edge length modification," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 50-67, July.
    4. Elisabeth Gassner, 2012. "An inverse approach to convex ordered median problems in trees," Journal of Combinatorial Optimization, Springer, vol. 23(2), pages 261-273, February.
    5. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
    6. Jianzhong Zhang & Liwei Zhang & Xiantao Xiao, 2010. "A Perturbation approach for an inverse quadratic programming problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 379-404, December.
    7. Lindong Liu & Xiangtong Qi & Zhou Xu, 2024. "Stabilizing Grand Cooperation via Cost Adjustment: An Inverse Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 635-656, March.
    8. Ali Reza Sepasian, 2019. "Reverse 1-maxian problem with keeping existing 1-median," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 1-13, March.
    9. Fahimeh Baroughi Bonab & Rainer Burkard & Elisabeth Gassner, 2011. "Inverse p-median problems with variable edge lengths," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 263-280, April.
    10. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    11. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    12. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    13. Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
    14. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    15. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    16. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    17. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    18. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.
    19. T. R. Wang & N. Pedroni & E. Zio & V. Mousseau, 2020. "Identification of Protective Actions to Reduce the Vulnerability of Safety‐Critical Systems to Malevolent Intentional Acts: An Optimization‐Based Decision‐Making Approach," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 565-587, March.
    20. Lili Zhang & Wenhao Guo, 2023. "Inverse Optimization Method for Safety Resource Allocation and Inferring Cost Coefficient Based on a Benchmark," Mathematics, MDPI, vol. 11(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:11-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.