IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v159y2013i3d10.1007_s10957-012-0258-4.html
   My bibliography  Save this article

A New Steepest Descent Differential Inclusion-Based Method for Solving General Nonsmooth Convex Optimization Problems

Author

Listed:
  • Alireza Hosseini

    (Tarbiat Modares University)

  • S. M. Hosseini

    (Tarbiat Modares University)

Abstract

In this paper, we investigate a steepest descent neural network for solving general nonsmooth convex optimization problems. The convergence to optimal solution set is analytically proved. We apply the method to some numerical tests which confirm the effectiveness of the theoretical results and the performance of the proposed neural network.

Suggested Citation

  • Alireza Hosseini & S. M. Hosseini, 2013. "A New Steepest Descent Differential Inclusion-Based Method for Solving General Nonsmooth Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 698-720, December.
  • Handle: RePEc:spr:joptap:v:159:y:2013:i:3:d:10.1007_s10957-012-0258-4
    DOI: 10.1007/s10957-012-0258-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0258-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0258-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. Zhao & P.B. Luh, 2002. "New Bundle Methods for Solving Lagrangian Relaxation Dual Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 373-397, May.
    2. M. V. Solodov, 2003. "On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 151-165, October.
    3. J. L. Goffin & A. Haurie & J. P. Vial, 1992. "Decomposition and Nondifferentiable Optimization with the Projective Algorithm," Management Science, INFORMS, vol. 38(2), pages 284-302, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    2. Larsson, Torbjorn & Patriksson, Michael & Stromberg, Ann-Brith, 2003. "On the convergence of conditional [var epsilon]-subgradient methods for convex programs and convex-concave saddle-point problems," European Journal of Operational Research, Elsevier, vol. 151(3), pages 461-473, December.
    3. G. Y. Zhao, 1999. "Interior-Point Methods with Decomposition for Solving Large-Scale Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 169-192, July.
    4. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    5. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    6. Samir Elhedhli & Jean-Louis Goffin, 2005. "Efficient Production-Distribution System Design," Management Science, INFORMS, vol. 51(7), pages 1151-1164, July.
    7. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    8. Weiner, Jake & Ernst, Andreas T. & Li, Xiaodong & Sun, Yuan & Deb, Kalyanmoy, 2021. "Solving the maximum edge disjoint path problem using a modified Lagrangian particle swarm optimisation hybrid," European Journal of Operational Research, Elsevier, vol. 293(3), pages 847-862.
    9. Frédéric Babonneau & Jean-Philippe Vial, 2008. "An Efficient Method to Compute Traffic Assignment Problems with Elastic Demands," Transportation Science, INFORMS, vol. 42(2), pages 249-260, May.
    10. Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.
    11. Haurie, A., 1995. "Time scale decomposition in production planning for unreliable flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 82(2), pages 339-358, April.
    12. Attila Bernáth & Tamás Király & Erika Kovács & Gergely Mádi-Nagy & Gyula Pap & Júlia Pap & Jácint Szabó & László Végh, 2013. "Algorithms for multiplayer multicommodity flow problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(4), pages 699-712, December.
    13. Gondzio, J. & du Merle, O. & Sarkissian, R. & Vial, J. -P., 1996. "ACCPM -- A library for convex optimization based on an analytic center cutting plane method," European Journal of Operational Research, Elsevier, vol. 94(1), pages 206-211, October.
    14. Elhedhli, Samir & Naoum-Sawaya, Joe, 2015. "Improved branching disjunctions for branch-and-bound: An analytic center approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 37-45.
    15. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    16. P. Chardaire & A. Lisser, 2002. "Simplex and Interior Point Specialized Algorithms for Solving Nonoriented Multicommodity Flow Problems," Operations Research, INFORMS, vol. 50(2), pages 260-276, April.
    17. Laurent Drouet & Alain Haurie & Francesco Moresino & Jean-Philippe Vial & Marc Vielle & Laurent Viguier, 2008. "An oracle based method to compute a coupled equilibrium in a model of international climate policy," Computational Management Science, Springer, vol. 5(1), pages 119-140, February.
    18. Mohammad R. Oskoorouchi & Jean-Louis Goffin, 2005. "An Interior Point Cutting Plane Method for the Convex Feasibility Problem with Second-Order Cone Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 127-149, February.
    19. Dulce Rosas & Jordi Castro & Lídia Montero, 2009. "Using ACCPM in a simplicial decomposition algorithm for the traffic assignment problem," Computational Optimization and Applications, Springer, vol. 44(2), pages 289-313, November.
    20. C. Beltran-Royo & J.-P. Vial & A. Alonso-Ayuso, 2012. "Semi-Lagrangian relaxation applied to the uncapacitated facility location problem," Computational Optimization and Applications, Springer, vol. 51(1), pages 387-409, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:159:y:2013:i:3:d:10.1007_s10957-012-0258-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.