IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4501-d790587.html
   My bibliography  Save this article

Convergence Analysis on Data-Driven Fortet-Mourier Metrics with Applications in Stochastic Optimization

Author

Listed:
  • Zhiping Chen

    (School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China)

  • He Hu

    (School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jie Jiang

    (School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Fortet-Mourier (FM) probability metrics are important probability metrics, which have been widely adopted in the quantitative stability analysis of stochastic programming problems. In this study, we contribute to different types of convergence assertions between a probability distribution and its empirical distribution when the deviation is measured by FM metrics and consider their applications in stochastic optimization. We first establish the quantitative relation between FM metrics and Wasserstein metrics. After that, we derive the non-asymptotic moment estimate, asymptotic convergence, and non-asymptotic concentration estimate for FM metrics, which supplement the existing results. Finally, we apply the derived results to four kinds of stochastic optimization problems, which either extend the present results to more general cases or provide alternative avenues. All these discussions demonstrate the motivation as well as the significance of our study.

Suggested Citation

  • Zhiping Chen & He Hu & Jie Jiang, 2022. "Convergence Analysis on Data-Driven Fortet-Mourier Metrics with Applications in Stochastic Optimization," Sustainability, MDPI, vol. 14(8), pages 1-29, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4501-:d:790587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svetlozar T. Rachev & Werner Römisch, 2002. "Quantitative Stability in Stochastic Programming: The Method of Probability Metrics," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 792-818, November.
    2. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    2. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    3. Bita Analui & Georg Pflug, 2014. "On distributionally robust multiperiod stochastic optimization," Computational Management Science, Springer, vol. 11(3), pages 197-220, July.
    4. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    5. Yongchao Liu & Huifu Xu & Jane J. Ye, 2011. "Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 670-694, November.
    6. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    7. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    9. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    10. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    11. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    12. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    13. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    14. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    15. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    16. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
    17. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    18. Marcel-Ioan Boloș & Ioana-Alexandra Bradea & Camelia Delcea, 2021. "Optimization of Financial Asset Neutrosophic Portfolios," Mathematics, MDPI, vol. 9(11), pages 1-36, May.
    19. Alexander Engau, 2017. "Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 119-134, January.
    20. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4501-:d:790587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.