Sequential estimation of temporally evolving latent space network models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2022.107627
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Daniele Durante & David B. Dunson, 2014. "Nonparametric Bayes dynamic modelling of relational data," Biometrika, Biometrika Trust, vol. 101(4), pages 883-898.
- George Poyiadjis & Arnaud Doucet & Sumeetpal S. Singh, 2011. "Particle approximations of the score and observed information matrix in state space models with application to parameter estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 65-80.
- Matthias Katzfuss & Jonathan R. Stroud & Christopher K. Wikle, 2016. "Understanding the Ensemble Kalman Filter," The American Statistician, Taylor & Francis Journals, vol. 70(4), pages 350-357, October.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Pavel N. Krivitsky & Mark S. Handcock, 2014. "A separable model for dynamic networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 29-46, January.
- Bercu, Bernard & Del Moral, Pierre & Doucet, Arnaud, 2012. "Fluctuations of interacting Markov chain Monte Carlo methods," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1304-1331.
- Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
- Daniel K. Sewell & Yuguo Chen, 2015. "Analysis of the formation of the structure of social networks by using latent space models for ranked dynamic networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(4), pages 611-633, August.
- Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
- Walter R. Gilks & Carlo Berzuini, 2001. "Following a moving target—Monte Carlo inference for dynamic Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 127-146.
- Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
- repec:dau:papers:123456789/7305 is not listed on IDEAS
- Nicholas G. Polson & Jonathan R. Stroud & Peter Müller, 2008. "Practical filtering with sequential parameter learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 413-428, April.
- Benjamin Bloem‐Reddy & Peter Orbanz, 2018. "Random‐walk models of network formation and sequential Monte Carlo methods for graphs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 871-898, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michael Schweinberger, 2020. "Statistical inference for continuous‐time Markov processes with block structure based on discrete‐time network data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 342-362, August.
- Mamatzakis, Emmanuel C. & Tsionas, Mike G., 2021. "Making inference of British household's happiness efficiency: A Bayesian latent model," European Journal of Operational Research, Elsevier, vol. 294(1), pages 312-326.
- Liu Xiangdong & Li Xianglong & Zheng Shaozhi & Qian Hangyong, 2020. "PMCMC for Term Structure of Interest Rates under Markov Regime Switching and Jumps," Journal of Systems Science and Information, De Gruyter, vol. 8(2), pages 159-169, April.
- Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
- Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
- Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
- Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
- Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011.
"state-observation sampling and the econometrics of learning models,"
HEC Research Papers Series
947, HEC Paris.
- Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
- Laurent E. Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Papers 1105.4519, arXiv.org.
- Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
- Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
- Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
- Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
- Pierre Del Moral & Ajay Jasra & Yan Zhou, 2017. "Biased Online Parameter Inference for State-Space Models," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 727-749, September.
- Salima El Kolei, 2013. "Parametric estimation of hidden stochastic model by contrast minimization and deconvolution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1031-1081, November.
- Naoki Awaya & Yasuhiro Omori, 2019. "Particle rolling MCMC," CIRJE F-Series CIRJE-F-1110, CIRJE, Faculty of Economics, University of Tokyo.
- Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020.
"Dynamic interbank network analysis using latent space models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
- Fernando Linardi & Cees (C.G.H.) Diks & Marco (M.J.) van der Leij & Iuri Lazier, 2017. "Dynamic Interbank Network Analysis Using Latent Space Models," Tinbergen Institute Discussion Papers 17-101/II, Tinbergen Institute.
- Fernando Linardi & Cees Diks & Marco van der Leij & Iuri Lazier, 2018. "Dynamic Interbank Network Analysis Using Latent Space Models," Working Papers Series 487, Central Bank of Brazil, Research Department.
- He, Zhongfang & Maheu, John M., 2010.
"Real time detection of structural breaks in GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
- Zhongfang He & John M Maheu, 2008. "Real Time Detection of Structural Breaks in GARCH Models," Working Papers tecipa-336, University of Toronto, Department of Economics.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Working Paper series 11_09, Rimini Centre for Economic Analysis.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Staff Working Papers 09-31, Bank of Canada.
- Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
- Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.
- Ick Hoon Jin & Minjeong Jeon & Michael Schweinberger & Jonghyun Yun & Lizhen Lin, 2022. "Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1225-1244, November.
More about this item
Keywords
Statistical network analysis; Sequential Monte Carlo; Latent space; Dynamic networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002079. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.