Network Hawkes process models for exploring latent hierarchy in social animal interactions
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12581
Download full text from publisher
References listed on IDEAS
- Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
- Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
- Daniele Durante & David B. Dunson, 2014. "Nonparametric Bayes dynamic modelling of relational data," Biometrika, Biometrika Trust, vol. 101(4), pages 883-898.
- Mark E. Glickman, 1999. "Parameter Estimation in Large Dynamic Paired Comparison Experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 377-394.
- Lee Alan Dugatkin & Ryan L. Earley, 2003. "Group fusion: the impact of winner, loser, and bystander effects on hierarchy formation in large groups," Behavioral Ecology, International Society for Behavioral Ecology, vol. 14(3), pages 367-373, May.
- Tyler H. McCormick & Tian Zheng, 2015. "Latent Surface Models for Networks Using Aggregated Relational Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1684-1695, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
- Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020.
"Dynamic interbank network analysis using latent space models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
- Fernando Linardi & Cees (C.G.H.) Diks & Marco (M.J.) van der Leij & Iuri Lazier, 2017. "Dynamic Interbank Network Analysis Using Latent Space Models," Tinbergen Institute Discussion Papers 17-101/II, Tinbergen Institute.
- Fernando Linardi & Cees Diks & Marco van der Leij & Iuri Lazier, 2018. "Dynamic Interbank Network Analysis Using Latent Space Models," Working Papers Series 487, Central Bank of Brazil, Research Department.
- Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
- Turnbull, Kathryn & Nemeth, Christopher & Nunes, Matthew & McCormick, Tyler, 2023. "Sequential estimation of temporally evolving latent space network models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Silvia Montagna & Vanessa Orani & Raffaele Argiento, 2021. "Bayesian isotonic logistic regression via constrained splines: an application to estimating the serve advantage in professional tennis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 573-604, June.
- Stokes Tyrel & Bagga Gurashish & Kroetch Kimberly & Kumagai Brendan & Welsh Liam, 2024. "A generative approach to frame-level multi-competitor races," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 20(4), pages 365-383.
- Michael Schweinberger, 2020. "Statistical inference for continuous‐time Markov processes with block structure based on discrete‐time network data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 342-362, August.
- Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Carl P. Schmertmann & Marcos R. Gonzaga, 2018.
"Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records,"
Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
- Schmertmann, Carl & Gonzaga, Marcos Roberto, 2018. "Bayesian estimation of age-specific mortality and life expectancy for small areas with defective vital records," SocArXiv syzwx, Center for Open Science.
- Kovalchik, Stephanie, 2020. "Extension of the Elo rating system to margin of victory," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1329-1341.
- Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
- Jose Pina-Sánchez & John Paul Gosling, 2020. "Tackling selection bias in sentencing data analysis: a new approach based on a scale of severity," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 1047-1073, June.
- Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel RodrÃguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
- Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
- Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
- Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
- Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020.
"Growth, development, and structural change at the firm-level: The example of the PR China,"
Papers
2012.14503, arXiv.org.
- Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firmlevel: The example of the PR China," Chemnitz Economic Papers 040, Department of Economics, Chemnitz University of Technology.
- Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
- Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2021. "Growth, development, and structural change at the firm level: The example of the PR China," Working Papers on East Asian Studies 128/2021, University of Duisburg-Essen, Institute of East Asian Studies IN-EAST.
- van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
- Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
- Matthias Trendtel & Alexander Robitzsch, 2021. "A Bayesian Item Response Model for Examining Item Position Effects in Complex Survey Data," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 34-57, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1402-1426. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.