Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Liangyuan Hu & Joseph W. Hogan, 2019. "Causal comparative effectiveness analysis of dynamic continuous‐time treatment initiation rules with sparsely measured outcomes and death," Biometrics, The International Biometric Society, vol. 75(2), pages 695-707, June.
- van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Liangyuan Hu & Jiayi Ji & Hao Liu & Ronald Ennis, 2022. "A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations," IJERPH, MDPI, vol. 19(22), pages 1-6, November.
- Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.
- Liangyuan Hu & Joseph W. Hogan & Ann W. Mwangi & Abraham Siika, 2018. "Modeling the causal effect of treatment initiation time on survival: Application to HIV/TB co†infection," Biometrics, The International Biometric Society, vol. 74(2), pages 703-713, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Konstantinos Ziliaskopoulos & Christos Petropoulos & Chrysi Laspidou, 2024. "Enhancing Sustainability: Quantifying and Mapping Vulnerability to Extreme Heat Using Socioeconomic Factors at the National, Regional and Local Levels," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kevin Blattler & Hannes Wallimann & Widar von Arx, 2024. "Free public transport to the destination: A causal analysis of tourists' travel mode choice," Papers 2401.14945, arXiv.org, revised Feb 2024.
- Youmi Suk & Hyunseung Kang, 2022. "Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 310-343, March.
- Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
- Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- William Arbour, 2021. "Can Recidivism be Prevented from Behind Bars? Evidence from a Behavioral Program," Working Papers tecipa-683, University of Toronto, Department of Economics.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
- Stephen Jarvis & Olivier Deschenes & Akshaya Jha, 2022.
"The Private and External Costs of Germany’s Nuclear Phase-Out,"
Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1311-1346.
- Stephen Jarvis & Olivier Deschenes & Akshaya Jha, 2019. "The Private and External Costs of Germany's Nuclear Phase-Out," NBER Working Papers 26598, National Bureau of Economic Research, Inc.
- Jarvis, Stephen & Deschenes, Olivier & Jha, Akshaya, 2022. "The private and external costs of Germany’s nuclear phase-out," LSE Research Online Documents on Economics 113634, London School of Economics and Political Science, LSE Library.
- Hayakawa, Kazunobu & Keola, Souknilanh & Silaphet, Korrakoun & Yamanouchi, Kenta, 2022. "Estimating the impacts of international bridges on foreign firm locations: a machine learning approach," IDE Discussion Papers 847, Institute of Developing Economies, Japan External Trade Organization(JETRO).
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
- Labro, Eva & Lang, Mark & Omartian, James D., 2023. "Predictive analytics and centralization of authority," Journal of Accounting and Economics, Elsevier, vol. 75(1).
- Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
More about this item
Keywords
causal inference; variable selection; missing data; sensitivity analysis; ensemble methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16080-:d:990266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.