hsmm -- An R package for analyzing hidden semi-Markov models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bulla, Jan & Bulla, Ingo, 2006. "Stylized facts of financial time series and hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2192-2209, December.
- Bulla, Jan, 2006. "Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series," MPRA Paper 7675, University Library of Munich, Germany.
- Jan Bulla & Andreas Berzel, 2008. "Computational issues in parameter estimation for stationary hidden Markov models," Computational Statistics, Springer, vol. 23(1), pages 1-18, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pohle, Jennifer & Adam, Timo & Beumer, Larissa T., 2022. "Flexible estimation of the state dwell-time distribution in hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
- C. E. Pertsinidou & G. Tsaklidis & E. Papadimitriou & N. Limnios, 2017. "Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1064-1085, April.
- O'Connell, Jared & Højsgaard, Søren, 2011. "Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i04).
- Morteza Amini & Afarin Bayat & Reza Salehian, 2023. "hhsmm: an R package for hidden hybrid Markov/semi-Markov models," Computational Statistics, Springer, vol. 38(3), pages 1283-1335, September.
- Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
- Andriyas, Sanyogita & McKee, Mac, 2014. "Exploring irrigation behavior at Delta, Utah using hidden Markov models," Agricultural Water Management, Elsevier, vol. 143(C), pages 48-58.
- Hammer, Hugo & Tjelmeland, Håkon, 2011. "Approximate forward-backward algorithm for a switching linear Gaussian model," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 154-167, January.
- Valeriy Zakamulin, 2023. "Not all bull and bear markets are alike: insights from a five-state hidden semi-Markov model," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-25, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
- Jan Bulla & Sascha Mergner & Ingo Bulla & André Sesboüé & Christophe Chesneau, 2011. "Markov-switching asset allocation: Do profitable strategies exist?," Journal of Asset Management, Palgrave Macmillan, vol. 12(5), pages 310-321, November.
- Wang, Ting & Bebbington, Mark, 2013. "Identifying anomalous signals in GPS data using HMMs: An increased likelihood of earthquakes?," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 27-44.
- Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
- Wang, Shixuan & Gupta, Rangan & Zhang, Yue-Jun, 2021.
"Bear, Bull, Sidewalk, and Crash: The Evolution of the US Stock Market Using Over a Century of Daily Data,"
Finance Research Letters, Elsevier, vol. 43(C).
- Shixuan Wang & Rangan Gupta & Yue-Jun Zhang, 2020. "Bear, Bull, Sidewalk, and Crash: The Evolution of the US Stock Market Using Over a Century of Daily Data," Working Papers 202097, University of Pretoria, Department of Economics.
- Vlad Stefan Barbu & Guglielmo D’Amico & Thomas Gkelsinis, 2021. "Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable Systems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
- Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
- Jan Bulla, 2010.
"Hidden Markov models with t components. Increased persistence and other aspects,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 459-475.
- Bulla, Jan, 2009. "Hidden Markov models with t components. Increased persistence and other aspects," MPRA Paper 21830, University Library of Munich, Germany.
- Laurie Davies & Walter Kraemer, 2016.
"Stylized Facts and Simulating Long Range Financial Data,"
CESifo Working Paper Series
5796, CESifo.
- Laurie Davies & Walter Kramer, 2016. "Stylized Facts and Simulating Long Range Financial Data," Papers 1612.05229, arXiv.org.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Andrea Arfè & Stefano Peluso & Pietro Muliere, 2021. "The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 1-15, April.
- Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
- Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2019. "Inference of Binary Regime Models with Jump Discontinuities," Papers 1910.10606, arXiv.org, revised Mar 2022.
- Kaihua Deng, 2018. "Another Look at Large-Cap Stock Return Comovement: A Semi-Markov-Switching Approach," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 227-262, February.
- Gallo, Giampiero M. & Otranto, Edoardo, 2008.
"Volatility spillovers, interdependence and comovements: A Markov Switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
- Giampiero Gallo & Edoardo Otranto, 2007. "Volatility Spillovers, Interdependence and Comovements: A Markov Switching Approach," Econometrics Working Papers Archive wp2007_11, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Luca De Angelis & Leonard J. Paas, 2013. "A dynamic analysis of stock markets using a hidden Markov model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1682-1700, August.
- Elizabeth Fons & Paula Dawson & Jeffrey Yau & Xiao-jun Zeng & John Keane, 2019. "A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing," Papers 1902.10849, arXiv.org.
- Milan Kumar Das & Anindya Goswami, 2018. "Testing of Binary Regime Switching Models using Squeeze Duration Analysis," Papers 1807.04393, arXiv.org, revised Aug 2018.
- Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:3:p:611-619. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.