IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i2p625-639.html
   My bibliography  Save this article

An iterative approach to minimize the mean squared error in ridge regression

Author

Listed:
  • Ka Wong
  • Sung Chiu

Abstract

The methods of computing the ridge parameters have been studied for more than four decades. However, there is still no way to compute its optimal value. Nevertheless, many methods have been proposed to yield ridge regression estimators of smaller mean squared errors than the least square estimators empirically. This paper compares the mean squared errors of 26 existing methods for ridge regression in different scenarios. A new approach is also proposed, which minimizes the empirical mean squared errors iteratively. It is found that the existing methods can be divided into two groups: one is those that are better, but only slightly, than the least squares method in many cases, and the other is those that are much better than the least squares method in only some cases but can be (sometimes much) worse than it in many others. The new method, though not uniformly the best, outperforms the least squares method well in many cases and underperforms it only slightly in a few cases. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Ka Wong & Sung Chiu, 2015. "An iterative approach to minimize the mean squared error in ridge regression," Computational Statistics, Springer, vol. 30(2), pages 625-639, June.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:2:p:625-639
    DOI: 10.1007/s00180-015-0557-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-015-0557-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-015-0557-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delaney, Nancy Jo & Chatterjee, Sangit, 1986. "Use of the Bootstrap and Cross-validation in Ridge Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(2), pages 255-262, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    2. Nusrat Shaheen & Ismail Shah & Amani Almohaimeed & Sajid Ali & Hana N. Alqifari, 2023. "Some Modified Ridge Estimators for Handling the Multicollinearity Problem," Mathematics, MDPI, vol. 11(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Revan Ă–zkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:2:p:625-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.