IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v50y2001i4p405-422.html
   My bibliography  Save this article

Validation of surrogate end points in multiple randomized clinical trials with failure time end points

Author

Listed:
  • Tomasz Burzykowski
  • Geert Molenberghs
  • Marc Buyse
  • Helena Geys
  • Didier Renard

Abstract

Before a surrogate end point can replace a final (true) end point in the evaluation of an experimental treatment, it must be formally ‘validated’. The validation will typically require large numbers of observations. It is therefore useful to consider situations in which data are available from several randomized experiments. For two normally distributed end points Buyse and co‐workers suggested a new definition of validity in terms of the quality of both trial level and individual level associations between the surrogate and true end points. This paper extends this approach to the important case of two failure time end points, using bivariate survival modelling. The method is illustrated by using two actual sets of data from cancer clinical trials.

Suggested Citation

  • Tomasz Burzykowski & Geert Molenberghs & Marc Buyse & Helena Geys & Didier Renard, 2001. "Validation of surrogate end points in multiple randomized clinical trials with failure time end points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 405-422.
  • Handle: RePEc:bla:jorssc:v:50:y:2001:i:4:p:405-422
    DOI: 10.1111/1467-9876.00244
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00244
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Welz, Thilo & Viechtbauer, Wolfgang & Pauly, Markus, 2023. "Cluster-robust estimators for multivariate mixed-effects meta-regression," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    2. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    3. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse, 2004. "The validation of surrogate end points by using data from randomized clinical trials: a case‐study in advanced colorectal cancer," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(1), pages 103-124, February.
    4. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling," Biometrics, The International Biometric Society, vol. 68(1), pages 226-232, March.
    5. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    6. Layla Parast & Lu Tian & Tianxi Cai, 2020. "Assessing the value of a censored surrogate outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 245-265, April.
    7. Ghosh Debashis, 2008. "On the Plackett Distribution with Bivariate Censored Data," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-24, May.
    8. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    9. Casimir Ledoux Sofeu & Virginie Rondeau, 2020. "How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
    10. Ariel Alonso & Helena Geys & Geert Molenberghs & Michael G. Kenward & Tony Vangeneugden, 2004. "Validation of Surrogate Markers in Multiple Randomized Clinical Trials with Repeated Measurements: Canonical Correlation Approach," Biometrics, The International Biometric Society, vol. 60(4), pages 845-853, December.
    11. Renfro, Lindsay A. & Shi, Qian & Xue, Yuan & Li, Junlong & Shang, Hongwei & Sargent, Daniel J., 2014. "Center-within-trial versus trial-level evaluation of surrogate endpoints," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 1-20.
    12. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    13. Shi, Qian & Renfro, Lindsay A. & Bot, Brian M. & Burzykowski, Tomasz & Buyse, Marc & Sargent, Daniel J., 2011. "Comparative assessment of trial-level surrogacy measures for candidate time-to-event surrogate endpoints in clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2748-2757, September.
    14. Lindsay A. Renfro & Bradley P. Carlin & Daniel J. Sargent, 2012. "Bayesian Adaptive Trial Design for a Newly Validated Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(1), pages 258-267, March.
    15. Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
    16. Xiaoyun Li & Cong Chen & Wen Li, 2018. "Adaptive Biomarker Population Selection in Phase III Confirmatory Trials with Time-to-Event Endpoints," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 324-341, August.
    17. Erin E. Gabriel & Michael J. Daniels & M. Elizabeth Halloran, 2016. "Comparing biomarkers as trial level general surrogates," Biometrics, The International Biometric Society, vol. 72(4), pages 1046-1054, December.
    18. Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.
    19. Debashis Ghosh, 2008. "Semiparametric Inference for Surrogate Endpoints with Bivariate Censored Data," Biometrics, The International Biometric Society, vol. 64(1), pages 149-156, March.
    20. Lorna Wheaton & Anastasios Papanikos & Anne Thomas & Sylwia Bujkiewicz, 2023. "Using Bayesian Evidence Synthesis Methods to Incorporate Real-World Evidence in Surrogate Endpoint Evaluation," Medical Decision Making, , vol. 43(5), pages 539-552, July.
    21. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:50:y:2001:i:4:p:405-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.