IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i10p2177-2189.html
   My bibliography  Save this article

Generating random correlation matrices based on partial correlations

Author

Listed:
  • Joe, Harry

Abstract

A d-dimensional positive definite correlation matrix R=([rho]ij) can be parametrized in terms of the correlations [rho]i,i+1 for i=1,...,d-1, and the partial correlations [rho]iji+1,...j-1 for j-i[greater-or-equal, slanted]2. These parameters can independently take values in the interval (-1,1). Hence we can generate a random positive definite correlation matrix by choosing independent distributions Fij, 1[less-than-or-equals, slant]i

Suggested Citation

  • Joe, Harry, 2006. "Generating random correlation matrices based on partial correlations," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2177-2189, November.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2177-2189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00088-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    2. Shang P. Lin & Robert B. Bendel, 1985. "Generation of Population Correlation Matrices with Specified Eigenvalues," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 193-198, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Wang, Mengjiao & Liu, Jianxu & Yang, Bing, 2024. "Does the strength of the US dollar affect the interdependence among currency exchange rates of RCEP and CPTPP countries?," Finance Research Letters, Elsevier, vol. 62(PA).
    3. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    4. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    5. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    6. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    7. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    8. Quinn C, 2009. "Measuring income-related inequalities in health using a parametric dependence function," Health, Econometrics and Data Group (HEDG) Working Papers 09/24, HEDG, c/o Department of Economics, University of York.
    9. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    10. Krupskii, Pavel & Huser, Raphaël, 2024. "Max-convolution processes with random shape indicator kernels," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    11. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    12. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    13. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    14. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    15. Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
    16. Guillermo Martínez-Flórez & Carlos Barrera-Causil & Artur J. Lemonte, 2022. "Power Families of Bivariate Proportional Hazard Models," Mathematics, MDPI, vol. 10(23), pages 1-18, November.
    17. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    18. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    19. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    20. Giovanni De Luca & Paola Zuccolotto, 2021. "Regime dependent interconnectedness among fuzzy clusters of financial time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 315-336, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2177-2189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.