IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i4d10.1007_s00180-021-01091-6.html
   My bibliography  Save this article

Spatial CART classification trees

Author

Listed:
  • Avner Bar-Hen

    (Cnam)

  • Servane Gey

    (Univ. Paris)

  • Jean-Michel Poggi

    (Univ. Paris-Saclay
    Univ. Paris)

Abstract

We propose to extend CART for bivariate marked point processes to provide a segmentation of the space into homogeneous areas for interaction between marks. While usual CART tree considers marginal distribution of the response variable at each node, the proposed algorithm, SpatCART, takes into account the spatial location of the observations in the splitting criterion. We introduce a dissimilarity index based on Ripley’s intertype K-function quantifying the interaction between two populations. This index used for the growing step of the CART strategy, leads to a heterogeneity function consistent with the original CART algorithm. Therefore the new variant is a way to explore spatial data as a bivariate marked point process using binary classification trees. The proposed procedure is implemented in an R package, and illustrated on simulated examples. SpatCART is finally applied to a tropical forest example.

Suggested Citation

  • Avner Bar-Hen & Servane Gey & Jean-Michel Poggi, 2021. "Spatial CART classification trees," Computational Statistics, Springer, vol. 36(4), pages 2591-2613, December.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01091-6
    DOI: 10.1007/s00180-021-01091-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01091-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01091-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loecher, Markus & Ropkins, Karl, 2015. "RgoogleMaps and loa: Unleashing R Graphics Power on Map Tiles," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i04).
    2. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    3. Avner Bar-Hen & Nicolas Picard, 2006. "Simulation study of dissimilarity between point process," Computational Statistics, Springer, vol. 21(3), pages 487-507, December.
    4. Wagner Martin & Zeileis Achim, 2019. "Heterogeneity and Spatial Dependence of Regional Growth in the EU: A Recursive Partitioning Approach," German Economic Review, De Gruyter, vol. 20(1), pages 67-82, February.
    5. Luc Anselin & Arthur Getis, 2010. "Spatial Statistical Analysis and Geographic Information Systems," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 35-47, Springer.
    6. Bel, L. & Allard, D. & Laurent, J.M. & Cheddadi, R. & Bar-Hen, A., 2009. "CART algorithm for spatial data: Application to environmental and ecological data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3082-3093, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smirnykh, Larisa & Woergoetter, Andreas, 2021. "Regional convergence in CEE before and after the Global Financial Crisis," IHS Working Paper Series 33, Institute for Advanced Studies.
    2. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    3. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    4. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    5. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    6. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    7. Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
    8. Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.
    9. Ye, Xinyue & Yue, Wenze, 2014. "Comparative analysis of regional development: Exploratory space-time data analysis and open source implementation," Economics Discussion Papers 2014-20, Kiel Institute for the World Economy (IfW Kiel).
    10. Mousaei Sanjerehei, Mohammad, 2011. "Determination of an appropriate quadrat size and shape for detecting association between plant species," Ecological Modelling, Elsevier, vol. 222(10), pages 1790-1792.
    11. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    12. Cristian Barra & Nazzareno Ruggiero, 2022. "How do dimensions of institutional quality improve Italian regional innovation system efficiency? The Knowledge production function using SFA," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 591-642, April.
    13. Kang Hou & Xuxiang Li & Jing Zhang, 2015. "GIS Analysis of Changes in Ecological Vulnerability Using a SPCA Model in the Loess Plateau of Northern Shaanxi, China," IJERPH, MDPI, vol. 12(4), pages 1-14, April.
    14. Giuseppe Arbia & Patrizia Cella & Giuseppe Espa & Diego Giuliani, 2015. "A micro spatial analysis of firm demography: the case of food stores in the area of Trento (Italy)," Empirical Economics, Springer, vol. 48(3), pages 923-937, May.
    15. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    16. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    17. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    18. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    19. Zamar, David S. & Gopaluni, Bhushan & Sokhansanj, Shahab, 2017. "Optimization of sawmill residues collection for bioenergy production," Applied Energy, Elsevier, vol. 202(C), pages 487-495.
    20. Jakub Staněk & Ondřej Šedivý & Viktor Beneš, 2014. "On Random Marked Sets with a Smaller Integer Dimension," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 397-410, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01091-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.