IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i24p3546-3554.html
   My bibliography  Save this article

A phenomenological model without dispersal kernel to model species migration

Author

Listed:
  • Saltré, F.
  • Chuine, I.
  • Brewer, S.
  • Gaucherel, C.

Abstract

Phenomenological approaches to model species migration are usually based on kernel-based methods. These methods require a good knowledge of the dispersal agent behaviour for a given species. They also calculate the location of individuals independently to each other (except the mother plant) and then suppress some of them according to additional interactions such as competition, facilitation and recruitment. In this paper, we propose to use a new phenomenological method, the Gibbs method, to model tree species migration at large scale. The Gibbs method handles the location of adult individuals in terms of pairwise interactions described by a potential function. This function summarizes the set of known and unknown factors determining the spatial distribution of the individuals (or cohorts). The principle of the Gibbs method is to minimize the sum of all pairwise interactions, also called the cost function, in order to optimize the spatial point pattern according to the chosen potential function.

Suggested Citation

  • Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:24:p:3546-3554
    DOI: 10.1016/j.ecolmodel.2009.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009004098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    2. James S. Clark & Jason S. McLachlan, 2003. "Stability of forest biodiversity," Nature, Nature, vol. 423(6940), pages 635-638, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    2. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    3. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    4. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    5. Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
    6. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    7. Giuseppe Arbia & Patrizia Cella & Giuseppe Espa & Diego Giuliani, 2015. "A micro spatial analysis of firm demography: the case of food stores in the area of Trento (Italy)," Empirical Economics, Springer, vol. 48(3), pages 923-937, May.
    8. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    9. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    10. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    11. Jakub Staněk & Ondřej Šedivý & Viktor Beneš, 2014. "On Random Marked Sets with a Smaller Integer Dimension," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 397-410, June.
    12. Amanda S. Hering & Sean Bair, 2014. "Characterizing spatial and chronological target selection of serial offenders," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 123-140, January.
    13. Tilman M. Davies & Martin L. Hazelton, 2013. "Assessing minimum contrast parameter estimation for spatial and spatiotemporal log‐Gaussian Cox processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 355-389, November.
    14. Marcon, Eric & Traissac, Stéphane & Puech, Florence & Lang, Gabriel, 2015. "Tools to Characterize Point Patterns: dbmss for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(c03).
    15. Carlos Comas & Jorge Mateu & Aila Särkkä, 2010. "A third‐order point process characteristic for multi‐type point processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 19-44, February.
    16. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    17. Tomáš Mrkvička & Ilya Molchanov, 2005. "Optimisation of linear unbiased intensity estimators for point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 71-81, March.
    18. Yosef E Maruvka & Nadav M Shnerb, 2009. "Polymorphism Data Can Reveal the Origin of Species Abundance Statistics," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-6, April.
    19. Laura Anton-Sanchez & Pedro Larrañaga & Ruth Benavides-Piccione & Isabel Fernaud-Espinosa & Javier DeFelipe & Concha Bielza, 2017. "Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-14, June.
    20. Angelo Mazza & Antonio Punzo, 2016. "Spatial attraction in migrants' settlement patterns in the city of Catania," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(5), pages 117-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:24:p:3546-3554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.