IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i2p473-480.html
   My bibliography  Save this article

Empirical likelihood for small area estimation

Author

Listed:
  • Sanjay Chaudhuri
  • Malay Ghosh

Abstract

Current methodologies in small area estimation are mostly either parametric or heavily dependent on the assumed linearity of the estimators of the small area means. We discuss an alternative empirical likelihood-based Bayesian approach, which neither requires a parametric likelihood nor assumes linearity of the estimators, and can handle both discrete and continuous data in a unified manner. Empirical likelihoods for both area- and unit-level models are introduced. We discuss the suitability of the proposed likelihoods in Bayesian inference and illustrate their performances on a real dataset and a simulation study. Copyright 2011, Oxford University Press.

Suggested Citation

  • Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:473-480
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr004
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai-tai Fang & Rahul Mukerjee, 2005. "Expected lengths of confidence intervals based on empirical discrepancy statistics," Biometrika, Biometrika Trust, vol. 92(2), pages 499-503, June.
    2. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-519, March.
    3. J. N. K. Rao & Changbao Wu, 2010. "Bayesian pseudo‐empirical‐likelihood intervals for complex surveys," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 533-544, September.
    4. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    5. Zellner, Arnold, 1988. "Bayesian analysis in econometrics," Journal of Econometrics, Elsevier, vol. 37(1), pages 27-50, January.
    6. J. Chen, 2002. "Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys," Biometrika, Biometrika Trust, vol. 89(1), pages 230-237, March.
    7. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    8. Jiang, Jiming & Lahiri, P., 2006. "Estimation of Finite Population Domain Means: A Model-Assisted Empirical Best Prediction Approach," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 301-311, March.
    9. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    2. Bedoui, Adel & Lazar, Nicole A., 2020. "Bayesian empirical likelihood for ridge and lasso regressions," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    3. Liu Yang & Nandram Balgobin, 2022. "Sampling methods for the concentration parameter and discrete baseline of the Dirichlet Process," Statistics in Transition New Series, Statistics Poland, vol. 23(4), pages 21-36, December.
    4. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    5. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    6. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    7. Ouyang, Jiangrong & Bondell, Howard, 2023. "Bayesian analysis of longitudinal data via empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    8. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    2. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    3. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    4. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    5. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    6. In Chang & Rahul Mukerjee, 2012. "On the approximate frequentist validity of the posterior quantiles of a parametric function: results based on empirical and related likelihoods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 156-169, March.
    7. Kai-Tai Fang & Rahul Mukerjee, 2006. "Empirical-type likelihoods allowing posterior credible sets with frequentist validity: Higher-order asymptotics," Biometrika, Biometrika Trust, vol. 93(3), pages 723-733, September.
    8. Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
    9. Chang, In Hong & Mukerjee, Rahul, 2008. "Matching posterior and frequentist cumulative distribution functions with empirical-type likelihoods in the multiparameter case," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2793-2797, November.
    10. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    11. Bedoui, Adel & Lazar, Nicole A., 2020. "Bayesian empirical likelihood for ridge and lasso regressions," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    12. In Hong Chang & Rahul Mukerjee, 2008. "Bayesian and frequentist confidence intervals arising from empirical-type likelihoods," Biometrika, Biometrika Trust, vol. 95(1), pages 139-147.
    13. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    14. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    15. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    16. Caner, Mehmet, 2008. "Nearly-singular design in GMM and generalized empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 144(2), pages 511-523, June.
    17. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    18. Canay, Ivan A. & Otsu, Taisuke, 2012. "Hodges–Lehmann optimality for testing moment conditions," Journal of Econometrics, Elsevier, vol. 171(1), pages 45-53.
    19. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    20. Francesco Bravo & Ba M. Chu & David T. Jacho-Chávez, 2017. "Semiparametric estimation of moment condition models with weakly dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 108-136, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:473-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.