IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v150y2020ics0167947320300852.html
   My bibliography  Save this article

Split sample empirical likelihood

Author

Listed:
  • Jaeger, Adam
  • Lazar, Nicole A.

Abstract

Empirical likelihood offers a nonparametric approach to estimation and inference, which replaces the probability density-based likelihood function with a function defined by estimating equations. While this eliminates the need for a parametric specification, the restriction of numerical optimization greatly decreases the applicability of empirical likelihood for large data problems. A solution to this problem is the split sample empirical likelihood; this variant utilizes a divide and conquer approach, allowing for parallel computation of the empirical likelihood function. The results show the asymptotic distribution of the estimators and test statistics derived from the split sample empirical likelihood are the same seen in standard empirical likelihood yet have significantly decreased computational times.

Suggested Citation

  • Jaeger, Adam & Lazar, Nicole A., 2020. "Split sample empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300852
    DOI: 10.1016/j.csda.2020.106994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300852
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    2. Jing Qin & Biao Zhang, 2007. "Empirical‐likelihood‐based inference in missing response problems and its application in observational studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 101-122, February.
    3. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    4. Grendar, Marian & Judge, George G., 2010. "Revised empirical likelihood," CUDARE Working Paper Series 1106, University of California at Berkeley, Department of Agricultural and Resource Economics and Policy.
    5. Qifan Song & Faming Liang, 2015. "A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 947-972, November.
    6. Grendar, Marian & Judge, George G., 2010. "Revised empirical likelihood," CUDARE Working Papers 91799, University of California, Berkeley, Department of Agricultural and Resource Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    2. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.
    3. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    4. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    5. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    6. Wei Yu & Cuizhen Niu & Wangli Xu, 2014. "An empirical likelihood inference for the coefficient difference of a two-sample linear model with missing response data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 675-693, July.
    7. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    8. Guangbao Guo & Yue Sun & Xuejun Jiang, 2020. "A partitioned quasi-likelihood for distributed statistical inference," Computational Statistics, Springer, vol. 35(4), pages 1577-1596, December.
    9. Satoshi Hattori & Masayuki Henmi, 2014. "Stratified doubly robust estimators for the average causal effect," Biometrics, The International Biometric Society, vol. 70(2), pages 270-277, June.
    10. Liugen Xue, 2009. "Empirical Likelihood Confidence Intervals for Response Mean with Data Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 671-685, December.
    11. Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
    12. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    13. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    14. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    15. Xie Yanmei & Zhang Biao, 2017. "Empirical Likelihood in Nonignorable Covariate-Missing Data Problems," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
    16. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    17. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.
    18. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    19. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    20. Wang, Qihua & Lai, Peng, 2011. "Empirical likelihood calibration estimation for the median treatment difference in observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1596-1609, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.