IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2258-d849247.html
   My bibliography  Save this article

Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data

Author

Listed:
  • Mazen Nassar

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt)

  • Refah Alotaibi

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Chunfang Zhang

    (School of Mathematics and Statistics, Xidian University, Xi’an 710126, China)

Abstract

In reliability analysis and life testing studies, the experimenter is frequently interested in studying a specific risk factor in the presence of other factors. In this paper, the estimation of the unknown parameters, reliability and hazard functions of alpha power exponential distribution is considered based on progressively Type-II censored competing risks data. We assume that the latent cause of failures has independent alpha power exponential distributions with different scale and shape parameters. The maximum likelihood method is considered to estimate the model parameters as well as the reliability and hazard rate functions. The approximate and two parametric bootstrap confidence intervals of the different estimators are constructed. Moreover, the Bayesian estimation method of the unknown parameters, reliability and hazard rate functions are obtained based on the squared error loss function using independent gamma priors. To get the Bayesian estimates as well as the highest posterior credible intervals, the Markov Chain Monte Carlo procedure is implemented. A comprehensive simulation experiment is conducted to compare the performance of the proposed procedures. Finally, a real dataset for the relapse of multiple myeloma with transplant-related mortality is analyzed.

Suggested Citation

  • Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2258-:d:849247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukhtar M Salah & Essam A Ahmed & Ziyad A Alhussain & Hanan Haj Ahmed & M El-Morshedy & M S Eliwa, 2021. "Statistical inferences for type-II hybrid censoring data from the alpha power exponential distribution," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-16, January.
    2. S. K. Ashour & M. Nassar, 2017. "Inference for Weibull distribution under adaptive Type-I progressive hybrid censored competing risks data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(10), pages 4756-4773, May.
    3. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    4. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    5. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    6. Biswabrata Pradhan & Debasis Kundu, 2009. "On progressively censored generalized exponential distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 497-515, November.
    7. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    8. Mukhtar M. Salah & Hijaz Ahmad, 2020. "On Progressive Type-II Censored Samples from Alpha Power Exponential Distribution," Journal of Mathematics, Hindawi, vol. 2020, pages 1-8, November.
    9. N. Balakrishnan, 2007. "Rejoinder on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 290-296, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    2. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    3. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    4. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    5. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    6. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    7. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    8. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    9. Ritwik Bhattacharya & Biswabrata Pradhan, 2017. "Computation of optimum Type-II progressively hybrid censoring schemes using variable neighborhood search algorithm," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 802-821, December.
    10. Refah Alotaibi & Ehab M. Almetwally & Indranil Ghosh & Hoda Rezk, 2022. "Classical and Bayesian Inference on Finite Mixture of Exponentiated Kumaraswamy Gompertz and Exponentiated Kumaraswamy Fréchet Distributions under Progressive Type II Censoring with Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    11. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    12. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    13. Wu, Shuo-Jye & Huang, Syuan-Rong, 2012. "Progressively first-failure censored reliability sampling plans with cost constraint," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2018-2030.
    14. Amit Singh Nayal & Bhupendra Singh & Vrijesh Tripathi & Abhishek Tyagi, 2024. "Analyzing stress-strength reliability $$\delta =\text{ P }[U," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2453-2472, June.
    15. Shu-Fei Wu & Yu-Lun Huang, 2024. "The Assessment of the Overall Lifetime Performance Index of Chen Products with Multiple Components," Mathematics, MDPI, vol. 12(13), pages 1-21, July.
    16. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    17. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    18. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    19. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    20. Wu, Shuo-Jye & Huang, Syuan-Rong, 2017. "Planning two or more level constant-stress accelerated life tests with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2258-:d:849247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.