IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i1d10.1007_s00180-018-0837-4.html
   My bibliography  Save this article

Estimating reducible stochastic differential equations by conversion to a least-squares problem

Author

Listed:
  • Oscar García

    (Dasometrics)

Abstract

Stochastic differential equations (SDEs) are increasingly used in longitudinal data analysis, compartmental models, growth modelling, and other applications in a number of disciplines. Parameter estimation, however, currently requires specialized software packages that can be difficult to use and understand. This work develops and demonstrates an approach for estimating reducible SDEs using standard nonlinear least squares or mixed-effects software. Reducible SDEs are obtained through a change of variables in linear SDEs, and are sufficiently flexible for modelling many situations. The approach is based on extending a known technique that converts maximum likelihood estimation for a Gaussian model with a nonlinear transformation of the dependent variable into an equivalent least-squares problem. A similar idea can be used for Bayesian maximum a posteriori estimation. It is shown how to obtain parameter estimates for reducible SDEs containing both process and observation noise, including hierarchical models with either fixed or random group parameters. Code and examples in R are given. Univariate SDEs are discussed in detail, with extensions to the multivariate case outlined more briefly. The use of well tested and familiar standard software should make SDE modelling more transparent and accessible.

Suggested Citation

  • Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0837-4
    DOI: 10.1007/s00180-018-0837-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0837-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0837-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/1124 is not listed on IDEAS
    2. Picchini, Umberto & Ditlevsen, Susanne, 2011. "Practical estimation of high dimensional stochastic differential mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1426-1444, March.
    3. Martinez, Alexandre Souto & González, Rodrigo Silva & Terçariol, César Augusto Sangaletti, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5679-5687.
    4. Soo, Yuh-Wen & Bates, Douglas M., 1992. "Loosely coupled nonlinear least squares," Computational Statistics & Data Analysis, Elsevier, vol. 14(2), pages 249-259, August.
    5. King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).
    6. repec:dau:papers:123456789/4642 is not listed on IDEAS
    7. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    8. Sophie Donnet & Jean-Louis Foulley & Adeline Samson, 2010. "Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations," Biometrics, The International Biometric Society, vol. 66(3), pages 733-741, September.
    9. Alexandre Souto Martinez & Rodrigo Silva Gonzalez & Cesar Augusto Sangaletti Tercariol, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Papers 0803.2635, arXiv.org, revised May 2008.
    10. Brouste, Alexandre & Fukasawa, Masaaki & Hino, Hideitsu & Iacus, Stefano & Kamatani, Kengo & Koike, Yuta & Masuda, Hiroki & Nomura, Ryosuke & Ogihara, Teppei & Shimuzu, Yasutaka & Uchida, Masayuki & Y, 2014. "The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i04).
    11. repec:dau:papers:123456789/11429 is not listed on IDEAS
    12. Kunita, Hiroshi, 2010. "Itô's stochastic calculus: Its surprising power for applications," Stochastic Processes and their Applications, Elsevier, vol. 120(5), pages 622-652, May.
    13. Driver, Charles C. & Oud, Johan H. L. & Voelkle, Manuel C., 2017. "Continuous Time Structural Equation Modeling with R Package ctsem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i05).
    14. Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
    15. Benjamin Favetto & Adeline Samson, 2010. "Parameter Estimation for a Bidimensional Partially Observed Ornstein–Uhlenbeck Process with Biological Application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 200-220, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Di Crescenzo & Paola Paraggio & Patricia Román-Román & Francisco Torres-Ruiz, 2023. "Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean," Statistical Papers, Springer, vol. 64(5), pages 1391-1438, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delattre, Maud & Genon-Catalot, Valentine & Larédo, Catherine, 2018. "Parametric inference for discrete observations of diffusion processes with mixed effects," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1929-1957.
    2. Charlotte Dion, 2016. "Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 919-951, November.
    3. Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Picchini, Umberto & Ditlevsen, Susanne, 2011. "Practical estimation of high dimensional stochastic differential mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1426-1444, March.
    5. B. L. S. Prakasa Rao, 2021. "Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 554-568, August.
    6. Destefano, Natália & Martinez, Alexandre Souto, 2011. "The additive property of the inconsistency degree in intertemporal decision making through the generalization of psychophysical laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1763-1772.
    7. Driver, Charles C. & Oud, Johan H. L. & Voelkle, Manuel C., 2017. "Continuous Time Structural Equation Modeling with R Package ctsem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i05).
    8. Mohammadi, Neda & Santoro, Leonardo V. & Panaretos, Victor M., 2024. "Nonparametric estimation for SDE with sparsely sampled paths: An FDA perspective," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    9. Moriguchi, Kai, 2018. "An approach for deriving growth equations for quantities exhibiting cumulative growth based on stochastic interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1150-1163.
    10. Cabella, Brenno Caetano Troca & Ribeiro, Fabiano & Martinez, Alexandre Souto, 2012. "Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1281-1286.
    11. Comte, F. & Genon-Catalot, V. & Samson, A., 2013. "Nonparametric estimation for stochastic differential equations with random effects," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2522-2551.
    12. Maud Delattre & Valentine Genon-Catalot & Adeline Samson, 2013. "Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 322-343, June.
    13. Barberis, L. & Condat, C.A. & Román, P., 2011. "Vector growth universalities," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1100-1105.
    14. Fabienne Comte & Nicolas Marie, 2021. "Nonparametric estimation for I.I.D. paths of fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 669-705, October.
    15. Piva, G.G. & Colombo, E.H. & Anteneodo, C., 2021. "Interplay between scales in the nonlocal FKPP equation," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Rivera-Castro, Miguel A. & Miranda, José G.V. & Borges, Ernesto P. & Cajueiro, Daniel O. & Andrade, Roberto F.S., 2012. "A top–bottom price approach to understanding financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1489-1496.
    17. dos Santos, Lindomar Soares & Destefano, Natália & Martinez, Alexandre Souto, 2018. "Decision making generalized by a cumulative probability weighting function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 250-259.
    18. Maud Delattre & Valentine Genon-Catalot & Catherine Larédo, 2018. "Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 953-983, November.
    19. Natalia Destefano & Alexandre Souto Martinez, 2010. "The additive property of the inconsistency degree in intertemporal decision making through the generalization of psychophysical laws," Papers 1010.5648, arXiv.org, revised May 2011.
    20. Takahashi, Taiki, 2010. "A social discounting model based on Tsallis’ statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3600-3603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0837-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.