An approach for deriving growth equations for quantities exhibiting cumulative growth based on stochastic interpretation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2017.08.142
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martinez, Alexandre Souto & González, Rodrigo Silva & Terçariol, César Augusto Sangaletti, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5679-5687.
- Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
- Wang, Cheng-Yu & Gao, Yun & Wang, Xue-Wen & Song, Yu-min & Zhou, Peng & Yang, Hai, 2011. "Dynamical properties of a logistic growth model with cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 1-7.
- Román-Román, P. & Torres-Ruiz, F., 2015. "A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 579-598.
- Thornley, John H.M. & Shepherd, John J. & France, J., 2007. "An open-ended logistic-based growth function: Analytical solutions and the power-law logistic model," Ecological Modelling, Elsevier, vol. 204(3), pages 531-534.
- Alexandre Souto Martinez & Rodrigo Silva Gonzalez & Cesar Augusto Sangaletti Tercariol, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Papers 0803.2635, arXiv.org, revised May 2008.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Destefano, Natália & Martinez, Alexandre Souto, 2011. "The additive property of the inconsistency degree in intertemporal decision making through the generalization of psychophysical laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1763-1772.
- Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
- Cabella, Brenno Caetano Troca & Ribeiro, Fabiano & Martinez, Alexandre Souto, 2012. "Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1281-1286.
- Barberis, L. & Condat, C.A. & Román, P., 2011. "Vector growth universalities," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1100-1105.
- Piva, G.G. & Colombo, E.H. & Anteneodo, C., 2021. "Interplay between scales in the nonlocal FKPP equation," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
- Rivera-Castro, Miguel A. & Miranda, José G.V. & Borges, Ernesto P. & Cajueiro, Daniel O. & Andrade, Roberto F.S., 2012. "A top–bottom price approach to understanding financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1489-1496.
- dos Santos, Lindomar Soares & Destefano, Natália & Martinez, Alexandre Souto, 2018. "Decision making generalized by a cumulative probability weighting function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 250-259.
- Natalia Destefano & Alexandre Souto Martinez, 2010. "The additive property of the inconsistency degree in intertemporal decision making through the generalization of psychophysical laws," Papers 1010.5648, arXiv.org, revised May 2011.
- Takahashi, Taiki, 2010. "A social discounting model based on Tsallis’ statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3600-3603.
- Thornley, John H.M. & France, James, 2013. "Use of growth functions to describe disease vector population dynamics—Additional assumptions are required and are important," Ecological Modelling, Elsevier, vol. 266(C), pages 97-102.
- Han, Yong & Sun, Zhiyu & Fang, Hongwei & Bai, Sen & Huang, Lei & He, Guojian, 2020. "Habitat succession of the Yangtze finless porpoise in Poyang Lake under the changing hydrodynamic and feeding environment," Ecological Modelling, Elsevier, vol. 424(C).
- Vinicius M. Netto & Joao Meirelles & Fabiano L. Ribeiro, 2017. "Social Interaction and the City: The Effect of Space on the Reduction of Entropy," Complexity, Hindawi, vol. 2017, pages 1-16, August.
- Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2018. "Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors," Mathematics, MDPI, vol. 6(5), pages 1-13, May.
- Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "T-Growth Stochastic Model: Simulation and Inference via Metaheuristic Algorithms," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
- Antonio Barrera & Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Two Multi-Sigmoidal Diffusion Models for the Study of the Evolution of the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(19), pages 1-29, September.
- Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
- Miškinis, Paulius & Vasiliauskienė, Vaida, 2017. "The analytical solutions of the harvesting Verhulst’s evolution equation," Ecological Modelling, Elsevier, vol. 360(C), pages 189-193.
- Shi, Pei-Jian & Men, Xing-Yuan & Sandhu, Hardev S. & Chakraborty, Amit & Li, Bai-Lian & Ou-Yang, Fang & Sun, Yu-Cheng & Ge, Feng, 2013. "The “general” ontogenetic growth model is inapplicable to crop growth," Ecological Modelling, Elsevier, vol. 266(C), pages 1-9.
- Ana García-Burgos & Paola Paraggio & Desirée Romero-Molina & Nuria Rico-Castro, 2024. "Inference with Non-Homogeneous Lognormal Diffusion Processes Conditioned on Nearest Neighbor," Mathematics, MDPI, vol. 12(23), pages 1-23, November.
- Nafidi, A. & Bahij, M. & Achchab, B. & Gutiérrez-Sanchez, R., 2019. "The stochastic Weibull diffusion process: Computational aspects and simulation," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 575-587.
More about this item
Keywords
Growth function; Tree diameter; Cumulative growth; Cumulative distribution function; Differential equation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:1150-1163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.