IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i5p622-652.html
   My bibliography  Save this article

Itô's stochastic calculus: Its surprising power for applications

Author

Listed:
  • Kunita, Hiroshi

Abstract

We trace Itô's early work in the 1940s, concerning stochastic integrals, stochastic differential equations (SDEs) and Itô's formula. Then we study its developments in the 1960s, combining it with martingale theory. Finally, we review a surprising application of Itô's formula in mathematical finance in the 1970s. Throughout the paper, we treat Itô's jump SDEs driven by Brownian motions and Poisson random measures, as well as the well-known continuous SDEs driven by Brownian motions.

Suggested Citation

  • Kunita, Hiroshi, 2010. "Itô's stochastic calculus: Its surprising power for applications," Stochastic Processes and their Applications, Elsevier, vol. 120(5), pages 622-652, May.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:5:p:622-652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00022-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    2. Ishikawa, Yasushi & Kunita, Hiroshi, 2006. "Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1743-1769, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yu & Yuan, Sanling, 2017. "Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 20-33.
    2. Liu, Meng & Bai, Chuanzhi, 2016. "Dynamics of a stochastic one-prey two-predator model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 308-321.
    3. Gao, Miaomiao & Jiang, Daqing, 2019. "Analysis of stochastic multimolecular biochemical reaction model with lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 601-613.
    4. Xiaoling Zou & Ke Wang, 2014. "Optimal Harvesting for a Logistic Population Dynamics Driven by a Lévy Process," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 969-979, June.
    5. Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
    6. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    7. Gao, Miaomiao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 191-203.
    8. Ishikawa, Yasushi & Kunita, Hiroshi & Tsuchiya, Masaaki, 2018. "Smooth density and its short time estimate for jump process determined by SDE," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3181-3219.
    9. Kang, Yuanbao & Wang, Caishi, 2014. "Itô formula for one-dimensional continuous-time quantum random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 154-162.
    10. Liu, Meng & Bai, Chuanzhi, 2016. "Optimal harvesting of a stochastic mutualism model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 301-309.
    11. Tan, Li & Jin, Wei & Hou, Zhenting, 2013. "Weak convergence of functional stochastic differential equations with variable delays," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2592-2599.
    12. Okhrati, Ramin & Balbás, Alejandro & Garrido, José, 2014. "Hedging of defaultable claims in a structural model using a locally risk-minimizing approach," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2868-2891.
    13. Biane, Philippe, 2010. "Itô's stochastic calculus and Heisenberg commutation relations," Stochastic Processes and their Applications, Elsevier, vol. 120(5), pages 698-720, May.
    14. Wang, Hui & Pan, Fangmei & Liu, Meng, 2019. "Survival analysis of a stochastic service–resource mutualism model in a polluted environment with pulse toxicant input," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 591-606.
    15. Liu, Meng & Deng, Meiling & Du, Bo, 2015. "Analysis of a stochastic logistic model with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 169-182.
    16. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    17. Jorge Sanchez-Ortiz & Omar U. Lopez-Cresencio & Francisco J. Ariza-Hernandez & Martin P. Arciga-Alejandre, 2021. "Cauchy Problem for a Stochastic Fractional Differential Equation with Caputo-Itô Derivative," Mathematics, MDPI, vol. 9(13), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masafumi Hayashi, 2010. "Coefficients of Asymptotic Expansions of SDE with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 373-389, December.
    2. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    3. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    4. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    5. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    6. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    7. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    8. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    9. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    10. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    11. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    12. Mancini, Cecilia, 2008. "Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 869-879, May.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    15. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    16. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    17. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    18. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    19. Shaw, Charles, 2020. "Regimes, Non-Linearities, and Price Discontinuities in Indian Energy Stocks," MPRA Paper 104798, University Library of Munich, Germany.
    20. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:5:p:622-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.