IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i3d10.1007_s00362-018-0980-6.html
   My bibliography  Save this article

Single-index partially functional linear regression model

Author

Listed:
  • Ping Yu

    (Beijing University of Technology
    Shanxi Normal University)

  • Jiang Du

    (Beijing University of Technology)

  • Zhongzhan Zhang

    (Beijing University of Technology)

Abstract

In this paper, we propose a flexible single-index partially functional linear regression model, which combines single-index model with functional linear regression model. All the unknown functions are estimated by B-spline approximation. Under some mild conditions, the convergence rates and asymptotic normality of the estimators are obtained. Finally, simulation studies and a real data analysis are conducted to investigate the performance of the proposed methodologies.

Suggested Citation

  • Ping Yu & Jiang Du & Zhongzhan Zhang, 2020. "Single-index partially functional linear regression model," Statistical Papers, Springer, vol. 61(3), pages 1107-1123, June.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-018-0980-6
    DOI: 10.1007/s00362-018-0980-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-0980-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-0980-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    2. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    3. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    4. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    5. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    6. Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
    7. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    8. Heng Lian, 2011. "Functional partial linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 115-128.
    9. Sanying Feng & Liugen Xue, 2013. "Variable selection for partially varying coefficient single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2637-2652, December.
    10. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    11. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2022. "High-Dimensional Statistics: Non-Parametric Generalized Functional Partially Linear Single-Index Model," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    2. Zhiqiang Jiang & Zhensheng Huang & Jing Zhang, 2023. "Functional single-index composite quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 595-603, July.
    3. Mustapha Rachdi & Mohamed Alahiane & Idir Ouassou & Abdelaziz Alahiane & Lahoucine Hobbad, 2024. "Cross-Validated Functional Generalized Partially Linear Single-Functional Index Model," Mathematics, MDPI, vol. 12(17), pages 1-22, August.
    4. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2021. "Partially Linear Generalized Single Index Models for Functional Data (PLGSIMF)," Stats, MDPI, vol. 4(4), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
    2. Usset, Joseph & Staicu, Ana-Maria & Maity, Arnab, 2016. "Interaction models for functional regression," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 317-329.
    3. Ruiyuan Cao & Jiang Du & Jianjun Zhou & Tianfa Xie, 2020. "FPCA-based estimation for generalized functional partially linear models," Statistical Papers, Springer, vol. 61(6), pages 2715-2735, December.
    4. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    5. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
    6. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    7. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2021. "Partially Linear Generalized Single Index Models for Functional Data (PLGSIMF)," Stats, MDPI, vol. 4(4), pages 1-21, September.
    8. Fanrong Zhao & Baoxue Zhang, 2024. "A U-Statistic for Testing the Lack of Dependence in Functional Partially Linear Regression Model," Mathematics, MDPI, vol. 12(16), pages 1-24, August.
    9. Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
    10. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2022. "High-Dimensional Statistics: Non-Parametric Generalized Functional Partially Linear Single-Index Model," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    11. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    12. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    13. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    14. Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
    15. Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Bin Yang & Min Chen & Tong Su & Jianjun Zhou, 2023. "Robust Estimation for Semi-Functional Linear Model with Autoregressive Errors," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    17. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    18. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    19. Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
    20. Song Song, 2011. "Dynamic Large Spatial Covariance Matrix Estimation in Application to Semiparametric Model Construction via Variable Clustering: the SCE approach," Papers 1106.3921, arXiv.org, revised Jun 2011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-018-0980-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.