IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v26y2011i3p491-505.html
   My bibliography  Save this article

Partially smooth tail-index estimation for small samples

Author

Listed:
  • Samuel Müller
  • Houng Chhay

Abstract

No abstract is available for this item.

Suggested Citation

  • Samuel Müller & Houng Chhay, 2011. "Partially smooth tail-index estimation for small samples," Computational Statistics, Springer, vol. 26(3), pages 491-505, September.
  • Handle: RePEc:spr:compst:v:26:y:2011:i:3:p:491-505
    DOI: 10.1007/s00180-010-0221-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-010-0221-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-010-0221-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    2. Furrer, Reinhard & Naveau, Philippe, 2007. "Probability weighted moments properties for small samples," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 190-195, January.
    3. Müller, Samuel & Rufibach, Kaspar, 2008. "On the max-domain of attraction of distributions with log-concave densities," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1440-1444, September.
    4. Melanie Birke & Holger Dette, 2008. "A note on estimating a smooth monotone regression by combining kernel and density estimates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 679-691.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    4. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    5. Cotter, John & Dowd, Kevin, 2007. "The tail risks of FX return distributions: A comparison of the returns associated with limit orders and market orders," Finance Research Letters, Elsevier, vol. 4(3), pages 146-154, September.
    6. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    7. Walter Distaso & Rustam Ibragimov & Alexander Semenov & Anton Skrobotov, 2020. "COVID-19: Tail Risk and Predictive Regressions," Papers 2009.02486, arXiv.org, revised Oct 2021.
    8. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    9. González-Sánchez, Mariano & Nave Pineda, Juan M., 2023. "Where is the distribution tail threshold? A tale on tail and copulas in financial risk measurement," International Review of Financial Analysis, Elsevier, vol. 86(C).
    10. Raymond Knott & Marco Polenghi, 2006. "Assessing central counterparty margin coverage on futures contracts using GARCH models," Bank of England working papers 287, Bank of England.
    11. Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
    12. Paweł D. Domański, 2024. "Energy-Aware Multicriteria Control Performance Assessment," Energies, MDPI, vol. 17(5), pages 1-18, March.
    13. Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
    14. Eser, Fabian & Schwaab, Bernd, 2016. "Evaluating the impact of unconventional monetary policy measures: Empirical evidence from the ECB׳s Securities Markets Programme," Journal of Financial Economics, Elsevier, vol. 119(1), pages 147-167.
    15. Fung, Kennard & Jeong, Jiin & Pereira, Javier, 2022. "More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
    16. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    17. Reza Siregar & Victor Pontines, 2004. "Successful and Unsuccessful Attacks: Evaluating the Stability of the East Asian Currencies," Centre for International Economic Studies Working Papers 2004-04, University of Adelaide, Centre for International Economic Studies.
    18. Melanie Birke & Natalie Neumeyer, 2013. "Testing Monotonicity of Regression Functions – An Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 438-454, September.
    19. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    20. Ronald Huisman & Victoria Stradnic & Sjur Westgaard, 2013. "Renewable energy and electricity prices: indirect empirical evidence from hydro power," Working Papers 2013/24, Institut d'Economia de Barcelona (IEB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:26:y:2011:i:3:p:491-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.