IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i8p2035-2045.html
   My bibliography  Save this article

Nonparametric k-sample test based on kernel density estimator for paired design

Author

Listed:
  • Martínez-Camblor, Pablo

Abstract

Comparing whether the marginal distribution functions of a k-dimensional random variable are equal or not is a classical problem in statistical inference. Usually, the parametric ANOVA repeat measures analysis or the nonparametric Friedman test are used. Both procedures allow us to detect differences among the location parameters but not among shapes or spreads of the involved distributions. The statistic which is based on the measure of the common area under the respective kernel density estimators is used in order to compare the equality among the marginal densities of a k-dimensional random variable. The BM algorithm is employed to select, automatically, the final bandwidth parameter. Its statistical power is studied from Monte Carlo simulations and a real data analysis is also considered.

Suggested Citation

  • Martínez-Camblor, Pablo, 2010. "Nonparametric k-sample test based on kernel density estimator for paired design," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2035-2045, August.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:2035-2045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00111-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ju & Zelterman, Daniel, 2002. "Rank tests of association for exchangeable paired data," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 111-129, July.
    2. U. Munzel, 1999. "Nonparametric methods for paired samples," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 53(3), pages 277-286, November.
    3. Pedro Delicado, 2007. "Functional k-sample problem when data are density functions," Computational Statistics, Springer, vol. 22(3), pages 391-410, September.
    4. Munzel, Ullrich, 1999. "Linear rank score statistics when ties are present," Statistics & Probability Letters, Elsevier, vol. 41(4), pages 389-395, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konietschke, F. & Bathke, A.C. & Hothorn, L.A. & Brunner, E., 2010. "Testing and estimation of purely nonparametric effects in repeated measures designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1895-1905, August.
    2. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    3. Konietschke, F. & Harrar, S.W. & Lange, K. & Brunner, E., 2012. "Ranking procedures for matched pairs with missing data — Asymptotic theory and a small sample approximation," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1090-1102.
    4. Matthias Studer & Gilbert Ritschard & Alexis Gabadinho & Nicolas S. Müller, 2011. "Discrepancy Analysis of State Sequences," Sociological Methods & Research, , vol. 40(3), pages 471-510, August.
    5. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    6. Anthony Hayter, 2014. "Identifying common normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 135-152, March.
    7. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    8. Gunawardana, Asanka & Konietschke, Frank, 2019. "Nonparametric multiple contrast tests for general multivariate factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 165-180.
    9. Michael G. Akritas & Jouni Kuha & D. Wayne Osgood, 2002. "A Nonparametric Approach to Matched Pairs with Missing Data," Sociological Methods & Research, , vol. 30(3), pages 425-454, February.
    10. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    11. Nowak, Claus P. & Konietschke, Frank, 2021. "Simultaneous inference for Kendall’s tau," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    12. repec:cte:wsrepe:ws133228 is not listed on IDEAS
    13. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    14. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    15. Bongiorno, Enea G. & Goia, Aldo, 2019. "Describing the concentration of income populations by functional principal component analysis on Lorenz curves," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 10-24.
    16. Harrar, Solomon W. & Bathke, Arne C., 2008. "Nonparametric methods for unbalanced multivariate data and many factor levels," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1635-1664, September.
    17. Vsevolozhskaya, O.A. & Greenwood, M.C. & Bellante, G.J. & Powell, S.L. & Lawrence, R.L. & Repasky, K.S., 2013. "Combining functions and the closure principle for performing follow-up tests in functional analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 175-184.
    18. Edgar Brunner & Frank Konietschke & Markus Pauly & Madan L. Puri, 2017. "Rank-based procedures in factorial designs: hypotheses about non-parametric treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1463-1485, November.
    19. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    20. Huaihou Chen & Philip T. Reiss & Thaddeus Tarpey, 2014. "Optimally weighted L-super-2 distance for functional data," Biometrics, The International Biometric Society, vol. 70(3), pages 516-525, September.
    21. Dennis Dobler & Sarah Friedrich & Markus Pauly, 2020. "Nonparametric MANOVA in meaningful effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 997-1022, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:2035-2045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.