IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v3y2006i2p161-174.html
   My bibliography  Save this article

Non-Parametric Regression Methods

Author

Listed:
  • Huseyin Ince

Abstract

No abstract is available for this item.

Suggested Citation

  • Huseyin Ince, 2006. "Non-Parametric Regression Methods," Computational Management Science, Springer, vol. 3(2), pages 161-174, April.
  • Handle: RePEc:spr:comgts:v:3:y:2006:i:2:p:161-174
    DOI: 10.1007/s10287-005-0006-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-005-0006-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-005-0006-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Winker & Marianna Lyra & Chris Sharpe, 2011. "Least median of squares estimation by optimization heuristics with an application to the CAPM and a multi-factor model," Computational Management Science, Springer, vol. 8(1), pages 103-123, April.
    2. Alexandros Agapitos & Anthony Brabazon & Michael O’Neill, 2017. "Regularised gradient boosting for financial time-series modelling," Computational Management Science, Springer, vol. 14(3), pages 367-391, July.
    3. Doron Sonsino & Tal Shavit, 2014. "Return prediction and stock selection from unidentified historical data," Quantitative Finance, Taylor & Francis Journals, vol. 14(4), pages 641-655, April.
    4. E. Lorenzo & G. Piscopo & M. Sibillo, 2024. "Addressing the economic and demographic complexity via a neural network approach: risk measures for reverse mortgages," Computational Management Science, Springer, vol. 21(1), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    2. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Burak Saltoglu, 2003. "Comparing forecasting ability of parametric and non-parametric methods: an application with Canadian monthly interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 169-176.
    5. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    6. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    7. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    9. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    10. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    11. Anlong Li, 1992. "Binomial approximation in financial models: computational simplicity and convergence," Working Papers (Old Series) 9201, Federal Reserve Bank of Cleveland.
    12. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    13. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    14. Darmoul Mokhtar & Nizar Harrathi, 2007. "Monetary information arrivals and intraday exchange rate volatility: a comparison of the GARCH and the EGARCH models," Post-Print halshs-00174996, HAL.
    15. Westerlund, Joakim, 2014. "On the choice of test for a unit root when the errors are conditionally heteroskedastic," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 40-53.
    16. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    18. Wang Ruihua & Wang Hongjun, 2020. "Correlation Analysis of Stock Market and Fund Market Based on M-Copula-EGARCH-M-GED Model," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 240-252, June.
    19. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    20. Guillaume Gaetan Martinet & Michael McAleer, 2018. "On the invertibility of EGARCH(p, q)," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 824-849, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:3:y:2006:i:2:p:161-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.